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Abstract. This proceedings depicts the optimisation and evaluation of a Variational Auto-
encoder plus Discriminator model used for Zγ background final state event generation. This
work has been completed to evaluate the use of deep learning models instead of traditional more
computationally expensive physics event production and classification mechanisms.

1 Introduction
This proceedings documents the secondary stages, evaluation and optimisation, of the
development of a deep neural network generative model for production of Zγ final state data
for physics analysis. Following the discovery of the Higgs boson in 2012 [1, 2], which can be
said to have completed the Standard Model (SM) of particle physics, there are still a number of
discrepancies to the SM in the form of unexplained phenomena and anomalies in the data that
prompt searches for new bosons. The work described in this paper fits into the bigger picture
of searching for new bosons as this work can specifically effects the efficiency and accuracy
of the search within the Zγ final state [3, 4]. A main limiting factor related to completing
the aforementioned search is the requirement of a large quantity of Zγ final state background
events. Traditionally in similar searches, the requirement of copious amounts of data is satisfied
through the use of computationally expensive Monte Carlo (MC) production mechanisms. Using
pre-trained deep learning models to produce data instead can have alleviate some of the finite
CPU hours used in the analysis as well as speed up the time taken. Over and above the use
of deep learning models in data generation, such models can also be used in the search for
signal classification purposes. Variational Auto-encoders (VAEs) are a type of deep learning
model that can somewhat uniquely be used as both a data generation and signal classification
model, using the same trained model. This bi-functionality again adds to the efficiency and time
improvement. The aim of this work is to evaluate the use of deep generative models, specifically
variational auto-encoders and derivatives for both data generation and signal classification tasks



in the search for new bosons. This proceedings specifically concentrates on the evaluation and
optimsation of the VAE based generative capacity of the model, further work will be completed
to evaluate the classification capability.

1.1 MC Zγ Final State Data
In this work, simulated Zγ background data has been used, which contributes to 90% of the total
backgrounds in the production of the Higgs like heavy scalar decaying to Zγ (pp → H → Zγ)
events, where Z → e+e− or Z → µ+µ−. The Zγ sample MC events have been generated
using Madgraph5 [5] with the NNPDF3.0 parton distribution functions [6]. Here, the Standard
Model (SM) of particle physics has been utilized for which the UFO model files required by
the Madgraph are from FeynRules [7]. The parton level generation is followed by the parton
showering and hadronization by Pythia [8] and then the detector level simulation is performed
using Delphes(v3) [9]. The jets at this level has been constructed using Fastjet [10] which
involves the anti-KT jet algorithm with PT > 20 GeV and radius R = 0.5. While generating
the sample we decayed the Zγ boson to leptons. Some baseline cuts have also been applied on
the leptons and photons at the Madgraph level to enhance the statistics.

1.2 Centre of Mass and Kinematic Features
The analysis focuses around the centre of mass of 150GeV (132GeV< mℓℓγ < 168GeV). The
kinematic features used in the study are Zγ invariant mass, mℓℓγ ; the transverse momentum,
azimuthal angle, pseudo-rapidity and energy of the leading lepton, sub-leading lepton and
photon respectively, Ptℓ1ℓ2γ , Φℓ1ℓ2γ , ηℓ1ℓ2γ and Eℓ1ℓ2γ ; missing transverse energy Emiss

T and
it’s azimuthal angle, ΦEmiss

T
; the number of jets, Nj , the number of central jets, Ncj ; and ∆Rℓℓ

(∆R ≡
√
(∆ηll)2 + (∆ϕll)2), Ptℓℓ/mℓℓγ , ∆Φℓℓ and ∆Φ(Emiss

T , Zγ).

2 Hypothesis
A well trained Variational Auto-encoder can aid in the search for new bosons in the Zγ final
state for both data generation and signal classification purposes. The work presented in this
proceedings ha a more specifc hypothesis as follows: The addition of a discriminator network to
the overall VAE model as well as a notion of adversarial training similar to that of a Generative
Adversarial Network can aid in the training of the model and produce better generated events.

3 Methodology
Previous proceedings works have described the initial development of the base VAE model and
therefore the base model will only be briefly described here. Concentration will be centred around
the addition of the discriminator network to the VAE overall model that aids in the training of
the overall model to produce better generated events in terms of a number of selected metrics.

3.1 Variational Auto-encoder
A VAE is an autoencoder (AE) with architectural changes and an additional component added
to the loss function that facilitates regularised training and imroves the generative capability
of the model by ensuring appropriate latent space properties. As shown in Figure 1, the VAE
architecture is composed of two main composite networks, the encoder, and the decoder. The
VAE is trained to minimise the loss between the input data (kinematic variable event) and the
encoded-decoded output (reconstructed event). However, in the case of the VAE, instead of
encoding an input event as a single vector, the input is encoded as a distribution over the latent
space of the VAE. This allows for some regularisation of the latent space.



Figure 1. Diagram of VAE Base and greater VAE+D model Architecture, showing encoder
network, decoder network, learned latent space and discriminator network.

These latent space distributions are forced to be normal Gaussian so that the encoder can
be configured to return latent space vectors that represent the mean µ and the covariance σ
of the normal Gaussian distributions because the Kullback-Leibler divergence between two the
Gaussian distributions has a form that can be directly expressed in terms of the means and
the covariance matrices of the two distributions. As a result of encoding an input event to a
distribution rather than a single vector, it is possible to regularise the latent space. The loss
function that is minimised when training a VAE is composed of a reconstruction loss component
that is responsible for forcing the output of the decoder to be as close to the input, and secondly,
a regularisation loss component, that serves to regularise the organisation of the latent space by
making the distributions returned by the encoder close to a standard normal distribution. The
loss function also contains a coefficient for the KL-Divergence loss term, βV . This can be used
during optimisation to weigh the importance of the KL-Divergence loss term against that of the
reconstruction loss term.

LV AE = LR + βV ∗ LKL (1)

LR = ((X ′ −X)2) (2)

Where X is the input event and X ′ is the reconstructed event.

LKL =
∑

(σ2 + µ2 − log σ − 1) (3)

3.2 Variational Auto-encoder + Discriminator (VAE+D)
The addition of a discriminator and the notion of adverserial training network helps in the
training of the VAE encoder-decoder network. Figure 1 shows the architecture diagram of the
VAE+D model. The VAE+D loss functions see below are slightly different to the VAE, whilst



still including the main loss components of the original VAE. Unlike the VAE, the VAE+D has
a loss function for each individual network, the encoder, decoder and discriminator and each
network’s weights are updated individually at different times during a forward pass of the overall
VAE+D. Similar to a GAN, the discriminator and the VAE are trained simultaneously, with
the discriminator learning to differentiate fake events from real events and the VAE learning to
reproduce real events accurately. The VAE+D loss functions and components are as follows:

BCEreal = criterionBCE(X)vs.1s (4)

BCErecon = criterionBCE(X
′)vs.0s (5)

BCEgen = criterionBCE(G)vs.0s (6)

Ldisc = BCEreal +BCErecon +BCEgen (7)

Ldec = γ ∗ LossR − Lossdisc (8)

Lenc = LossKL + γ ∗ LossR (9)

Where criterionBCE is the binary cross entropy between either the actual data against actual
data, reconstructed data or generated data. The results is then compared to a 1s label (for the
real data) or a 0s label (for reconstructed and generated) to obtain the final discriminator loss
function, Ldisc. γ is a similar variable to the variational beta in the standard VAE, however,
instead is a coefficient of the reconstruction loss instead of the KL divergence like in the VAE.

4 Model Optimisation
VAEs have many hyper-parameters that can be optimised in order to achieve the best model.
This hyper-parameter optimisation can be done using a variety of methodologies and available
libraries, however in this work a manual optimisation loop was created. The optimisation loop
was created to loop through each of the parameters shown in Table 1, on each iteration building,
training and evaluating a model with the loop iteration parameters. There have also been some
other considerations taken into account in the code involving looping through the architectural
based parameters because of the fact some architectural parameters are constrained by others
ones to achieve a plausible architecture.

Table 1. Table showing VAE Selected Hyper-parameters and value options
Hyper-parameter Optimisation

Hyper-parameter Model Value Options Brief Description
Learning Rate VAE, VAE+D [0.01, 0.001, 0.0001] Standard machine learning hyper-parameter that

determines how drastically the model changes it’s
weights each iteration in attempt to minimise the loss
function and achieve convergence.

Batch Size VAE, VAE+D [1, 16, 64, 256, 512] The batch size refers to the number of training
examples used in one training iteration of the model.

Latent Dimension
Size

VAE, VAE+D [8, 16, 32, 64] Number of latent dimensions variables.

Number of Hid-
den Layers

VAE, VAE+D [1, 2, 3] Number of hidden layers in between input and latent
layers.

Number of Nodes
in the Hidden
Layers

VAE, VAE+D [16, 32, 64, 128, 256, 512] Number of nodes in the hidden layers

Variational Beta VAE, VAE+D [1, 10, 100, 500, 1000, 5000] Coefficient of the KL-Divergence loss term in loss
function.

After running of the aforementioned hyper-parameter optimisation loop, the best parameters
were found for both the VAE and the VAE+D models.



5 Results
The Results of the addition of the discriminator network to the VAE can be seen in the figures
below. It can be seen that the optimised VAE+D model is able to generate more realistic events.

Figure 2. Distribution Graph of Generated Event Features vs. MC Data for VAE Model.

Figure 3. Distribution Graph of Generated Event Features vs. MC Data for VAE+D Model.



Figure 4. Correlation Comparison of Generated Event Features vs. MC Data for VAE Model.

Figure 5. Correlation Comparison of Generated Event Features vs. MC Data for VAE+D
Model.

6 Conclusion and Further Work
The addition of the discriminator network to the VAE model has improved the generation results
with limited initial optimisation. With further adjustments and hyper-parameter optimisation,
the results could achieve better convergence than shown in the results section. A further
adjustment that may yield significant improvements is the addition of normalising flows to
the VAE model. The addition of normalising flows to the model will allow for more complicated
probability distributions to be retained in the latent space, instead of simply forcing the latent
space distributions to be normal Gaussian.
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