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Abstract. A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) at
CERN went through a major upgrade during which some of its sub-detectors were replaced with
new ones, while others are equipped with new electronics to handle the expected higher collision
rates in the current running period (Run 3), which started in 2022. As part of the upgrade,
certain sub-detectors such as the Muon Trigger (MTR), renamed to Muon IDentifier (MID), now
operate in a continuous, trigger-less readout mode, in addition to the previous triggered readout
mode. Due to the increased quantity of data, typical methodologies are impossible to employ
without massive efforts to expand the processing capacity. Since the new ALICE computing
system cannot keep up with the increased data flow of the MID, a new processing algorithm has
been established. This paper provides an insight to the new approach of processing the MID
readout data based on a customized user-logic FPGA firmware.

1. Introduction

ALICE [1] is one of the four main experiments at the LHC. It is designed to study the strongly
interacting matter, namely the quark gluon plasma (QGP) [2] and its properties. In order to
unravel the enigma of the universe, the ALICE detector records data during lead-lead (Pb-Pb),
proton-lead (p-Pb), and proton-proton (pp) collisions for a complete study. Based on data col-
lected during Run 1 and 2, ALICE is the leading heavy-ion experiment in the world and is
quickly expanding the knowledge gathered in previous experiments all over the world. The LHC
completed the three-years planned second Long Shutdown, which started at the end of 2018 to
prepare for Run 3. In line with the LHC upgrade, the ALICE detector had a major upgrade [3]
. This upgrade addresses the challenge of reading out Pb-Pb collisions at a rate of 50 kHz, pp,
and p-Pb at 200 kHz and higher. At the center of the ALICE upgrade strategy, is a high-speed
readout approach based on a Common Readout Unit (CRU), which has been developed for de-
tector data readout, reconstruction, multiplexing, and data decoding on the Online-Offline (O?)
computing system.
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Many of the proposed physics observables require a change in the data-taking strategy, moving
away from triggering a small subset of events to continuous online processing and recording of
all events. To achieve these goals, ALICE has been upgraded in such a way that all interactions
will be scrutinized with precision. The upgrade entailed the replacement of some sub-detectors
with new ones, making use of new technologies, while others are now equipped with new front-
end and readout electronic systems. Thus far, the selection of single muon and di-muon events
with a maximum trigger rate of 1 kHz, limited by readout capabilities, was provided by the
MTR, as well as muon identification. However, the upgrade strategy described in the letter of
intent [3] does not require a muon trigger since all events of interest are now read out upon the
interaction trigger before online selections. For this reason, as part of the upgrade, the new MID
sub-detector plays the role of muon identifier.

2. Muon IDentifier

The MID [] is based on 72 single-gap Resistive Plate Chamber (RPC) detectors, arranged in 2
stations of 2 chambers, each at a distance of about 16 m and 17 m from the interaction point,
respectively. Its readout chain block diagram is shown in Fig. 1.
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Figure 1. A schematic description of the MID readout chain architecture for LHC Run 3.

The MID readout chain consists of about 21 000 strips connected to the 72 RPC detectors
spread over multiple Front-End Electronic Rapid Integrated Circuit (FEERIC) cards equipped
with one or two customized Application-Specific Integrated Circuits (ASICs). The strip signals
from the FEERICs are propagated to the readout electronics using high-speed Low-voltage
Differential Signaling (LVDS) channels. The readout electronics (Local and Regional cards)
act as interface between the on and off-detector electronics. They are mounted inside the
cavern a little further away from the detector stations, where the radiation is lower. Since the
colliding beams will produce a lot of radiation in the area around the ALICE detector in the
cavern, the Regional cards are equipped with a radiation hardening Gigabit Transceiver set
of chips (GBTx and GBT-SCA) [5, ] used to facilitate the bidirectional connections between
the readout electronics and CRUs through optical links, namely, GBT links. The CRUs are
the key components of the chain. They combine and multiplex data from multiple readout
electronic cards as well as timing and trigger information generated from the Central Trigger
Processor (CTP) via the Local Trigger Unit (LTU) before transmitting the data to the O2
computing facility for processing and storage. The CRUs are mounted on computers housed in
the intermediary computer room, called the counting room, tens of meters above the ALICE



cavern and thus do not require radiation hardening, as is the case for the readout electronics.
These computers can be reached over the network from the main Detector Control System
(DCS). The DCS manages the readout chain by sending commands and monitoring the system.
Experimental data are moved from the First Level Processor (FLP) to the Event Processing
Node (EPN) for processing and storage. The EPN is an internal component of the O? computing
system.

3. CRU firmware

The standard approach of delivering raw data to the O2 system is no longer sufficient to meet the
needs of the newly enhanced MID sub-detector. As a result, an alternative option was presented
to the ALICE collaboration [7]. Since the release of its first official version in 2018, the CRU
firmware provides basic functionalities allowing to interact with multiple systems via a variety
of interfaces and read out any sub-detector without conducting any first stage data analysis.
However, the CRU firmware can be customised to meet the demands of different sub-detectors
in the ALICE experiment. In particular, a first stage data analysis can be implemented before
online and offline reconstruction. This customisation is referred to as ”User Logic”. It is the
responsibility of the MID specialists to decide how data should be handled in their user logic.
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Figure 2. CRU firmware architecture. Adapted from [3].

The CRU firmware architecture is illustrated in Fig.2. It is composed of several modules
interacting with several interfaces. From left to right, the main interfaces are the GBT wrappers,
Board Support Package (BSP), Datapath Wrappers (DWs), Timing and Trigger Control (TTC),
Dedicated Data Generator (DDG), slow control, and PCle endpoints. All of these interfaces
provide indispensable functionalities to the CRU firmware, and at the heart of it, is a tailored
user logic component with functionalities that are unique to MID.

The key general requirements of the user logic component is derived from several documents
and are cited in this paper, but not duplicated. These requirements are described in [3, 9] and
[10]. One of the main functional requirements of the user-logic component is to reduce the data
rates transmitted to the O? system by performing zero-suppression. It also has to carefully
handle the readout electronics anomalies and errors, without stopping the data acquisition of
the readout chain. Transient losses of payload (physics) data is not tolerated. This means that



at all cost, every level of the user logic hierarchy must be able to identify anomalies from the
levels below and continue to transmit packets and follow the communication rules with the levels
above. The violation of communication protocols, corruption of data, and unresponsiveness of
the system in case of errors shall be prevented.

4. Architecture and design of the user-logic component

The user logic is designed in a sequential manner, with all processing occurring one after another
from an input-output perspective. The objective of this approach is to facilitate error tracking.
The user logic consists of three main segments, each of which is linked to a specific interface of
the CRU firmware (See Fig. 2). Starting from the top is the TTC segment (Grey), which receives
data from the timing and trigger system through the TTC interface. Next is the GBT segment
(Blue), which receives data from the readout electronics via the GBT wrappers, analyses it then
combines it with the Raw Data Header (RDH) extracted from timing and trigger information
before transmitting them to the O? system via the datapath wrappers. The GBT segment is
the only part of the design that can be duplicated through parameterization. Hence, enabling
the possibility to process multiple GBT links, allows for improvement and adaption to diverse
testing scenarios. The last segment is the Avalon (Orange), which provides configuration and
monitoring through the PCle interface. A representation of the user-logic block diagram and its
interfaces is shown in Fig. 3.
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Figure 3. Structure of the user-logic design showing the three main segments and data flow.

5. Test-bench layout

A test bench at iThemba LABS was implemented to extend the capabilities of the user logic
and match the test scenarios performed with readout electronics at SUBATECH, Nantes (where
the readout electronics cards were designed [11]). The test bench is a scaled-down replica of
the MID readout chain without the RPC detectors. It includes a fully-equipped VME crate (16
x Local, 1 x Regional, and 1 x J2 bus boards), the LTU, CRU, and FLP. Fig. 4 depicts the
test bench setup and illustrates how various components are linked together. The full setup can
be observed on the top left, while in the bottom left the fully-equipped VME crate is shown.
The Local and Regional cards are plugged into the crate via the J2 bus card sitting at the back
of the crate. Three cables are exiting the regional card, two of which are optical cables, and



connect the Regional card to the CRU. The latter is a USB (2.0) cable connected to a CentOS
PC, which is used to configure and program the Local and Regional FPGAs. At the top-right
is the LTU, which can be used to interact with multiple CRUs via a splitter. However, for this
application only one CRU is needed. The connection between the LTU and the CRU is done
via a single-mode SC to SC optical cable. The LTU uses an Ethernet cable to interact with
the FLP software, which runs on CentOS 8. Finally, on the bottom-right is the CRU board
housed by the FLP server. The CRU board is internally attached to the FLP via the PCle
connectors, its FPGA can be programmed using the PCle interface or via its integrated USB
blaster programmer, which connects to the FLP server using a micro-USB (2.0) cable.
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Figure 4. New test bench located in the laboratory S64 at iThemba LABS. The diagram shows
the readout chain components and how they are connected.

6. Results

The simulated results of the working user-logic firmware were generated in ModelSim using a
simulation framework provided by SUBATECH. A subset of the results is illustrated in Fig. 5.
As can be observed, the user logic output packets fulfill the readout control protocol criteria
specified in [10], which states that packets created by the user-logic must begin and terminate
with the Start Of Packet (SOP) and End Of Packet (EOP) signals, and each packet must be
enclosed by the RDH. The output data format transmitted by the user logic is based on the
GBT raw data, pre-analysed and concatenated into multiple data blocks of 256-bit to form the
payload included in the packets.

Figure 5 demonstrates that the user logic is operational and the simulation tests were
successful. The hardware tests result did not reflect the simulation results at first, but were
refined after each iteration until complete accuracy was achieved. The user logic helped
decreasing the amount of data transmitted from the CRU to the FLP by roughly 80%, and
improved the readability of the data at the O2 level.
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Figure 5. Simulation results extracted from Modelsim. This image compares data before and
after the user logic processing. As it can be seen, the packets start and end with SOP and EOP
signals. Each packet includes RDHs (open and close), that specify the borders of the packet.

7. FPGA resource usage

The CRU firmware combined with the user-logic component use about 160k (38%) Adaptive
Logic Modules (ALMs) and 1355 (50%) RAM blocks of the available resources. These results
were obtained after integrating and compiling the CRU firmware with the user logic component.
Table 1 provides a summary of the total FPGA resource used. The user logic consumes around
37k (9%) ALMs and 271 (10%) RAM blocks of the overall resources. These findings meet the
requirement of this study, but are good enough as the long-term aim is to process data from
16 GBT links while maintaining the overall RAM consumption below 75%. The user logic is
currently being optimized and will soon be available before the start of LHC Run 3.



Table 1. FPGA resource usage of the CRU firmware after insertion of the user logic component.

Resource name Total in ratio Total in percentage
Logic utilization (in ALMs) 160,282 / 427,200 38%
Pin 369 / 960 38%
Block memory bits 19,982,660 / 55,562,240 36%
RAM blocks 1,355 / 2,713 50%
RX channels 41 ) 72 57%
TX channels 41 / 72 57%
Phase Locked Loops (PLLs) 59 / 144 41%

8. Conclusion

The user-logic firmware performed reasonably well during the simulation and hardware tests.
The findings shown in this paper demonstrate that the user logic is stable, reliable, and built
to read out Pb-Pb collisions at a rate of 50 kHz, pp, and p-Pb at 200 kHz and higher without
issues. The methodology implemented shows that it is feasible to considerably reduce the data
bandwidth transmitted from the CRU to the FLP by roughly 80%. The user logic has passed
the validation tests and so fulfils the MID requirements. The results obtained also indicate that
with some optimizations, the user logic will be ready to process data from the complete MID
system before the start of LHC Run 3.
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