
Cavity QED based Open Quantum Walks

Ayanda Zungu1, Ilya Sinayskiy2,3, Francesco Petruccione2,3,4

1Centre for Space Research, North-West University, Mahikeng, 2745, South Africa
2Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal
Durban, 4001, South Africa
3National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
4School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch
7600, South Africa

E-mail: 1arzngu@gmail.com

Abstract. In this work, we propose a possible experimental scheme for the implementation of
open quantum walks (OQWs). The scheme is based on a model consisting of a weakly coupled
atom-field system in the dispersive regime inside a high-Q resonator (Q ∼ 1012). This setup
implements an OQW on the line with a two-level atom (driven by a laser) playing the role of the
“walker” and the Fock states of the cavity mode as lattice sites of the OQW. The master equation
for this system is solved analytically using generating functions for the zero temperature case.
Furthermore, the dynamics of the observables are presented for various parameters and their
behavior corresponds to the usual physical dynamics, which display collapses and revivals in
the evolution of the system observables.

1. Introduction
Realistic quantum systems are open, and therefore any physical system describing their behavior
must always include the unavoidable interaction with the environment [1]. The study of open
quantum system (OQS) dynamics has recently become crucial, as quantum technologies are
approaching regimes where decoherence and dissipation play an important role. For instance,
physical systems may experience phase loss and energy exchange with the surroundings, because
of this, the quantum effects are suppressed and the system evolves in a non-unitary fashion [1,2].

To address dissipation and decoherence in unitary quantum walks (UQWs) [3,4], which have
been used as a basic tool for quantum algorithms, a new type of non-unitary QWs called open
QWs was introduced with the aim of incorporating OQS [5]. OQWs are formulated as quantum
Markov chain on lattices or graphs. Mathematically, they are described by completely positive
trace-preserving (CPTP) maps [1,6] on graphs. The CPTP maps correspond to some dissipative
processes which are driving the transition between the nodes of a graph. Unlike UQWs which
uses quantum interference effects [3, 4, 7], in OQWs, the transitions between the nodes are
strictly driven by the interaction with the environment. Thus, the effects of the environment
play a crucial role in the time evolution of OQWs.

Furthermore, it has been suggested that OQWs are capable of performing dissipative quantum
computation and to create complex quantum states [5, 8]. The complete description of the
framework of OQWs can be found in [5] and a recent article [9] reviews progress on this topic.
More importantly, [10] suggested a quantum optics implementation of OQWs, and then derived
an OQWs based on the microscopic system-environment model [11].

In this paper, we propose a cavity quantum electrodynamics (QED) based implementation of
OQWs. The proposed scheme consist of a single two-level atom interacting with a single cavity
mode in a non-resonant fashion driven by the external field. A similar model for the microscopic



maser was suggested in [12]. In the proposed cavity QED scheme, a two-level atom plays the
role of the “walker” and the Fock states of the cavity mode correspond to the lattice sites of the
OQW. We derive the master equation for this system and construct the analytic expressions for
the populations using the generating functions for the zero temperature case.

This paper is organized as follows: In Sec. 2 we introduce the model and derive the effective
master equation. Then, we apply a specific unitary operator to the effective master equation
to include the classical laser driving. Sec. 3 contains the analytical solution for the generalized
master equation and discussions; and in Sec. 4 we summarize the results of this paper.

2. Model
We consider the interaction between a two-level atom (qubit) and a quantized single mode field.
The interaction Hamiltonian within the rotating wave approximation (RWA) of this system is

given by (ℏ = 1) [13], Ĥint = ∆â†â + g
(
âσ̂+ + â†σ̂−

)
, and the dynamics for the system under

Born-Markov approximation are given by the Lindblad master equation (ME) [14],

d

dt
ρ̂(t) = −ı[Ĥint, ρ̂] + γ (nth + 1)L [σ̂−, σ̂+] ρ̂+ γnthL [σ̂+, σ̂−] ρ̂, (1)

where ∆ = ωf − ωa stands for the frequency detuning between the field and the qubit, g is the
dipole interaction strength, σ̂± are the Pauli raising and the lowering operators for the qubit,
satisfying the commutation relation [σ̂+, σ̂−] = σ̂z. The bosonic operators â† and â are the
creation and annihilation operators for the cavity photons. In Eq. (1), the constant γ is the
spontaneous emission rate, nth = [exp(ℏω/kBT )− 1]−1 is the mean number of thermal photons,
kB is the Boltzmann’s constant, T is the temperature, and ω is the frequency. The superoperator
L[x̂, x̂†]ρ̂ = x̂ρ̂x̂† − (1/2)(x̂†x̂ρ̂+ ρ̂x̂†x̂) is the standard Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) dissipator [14].

2.1. Effective Dynamics
To derive the effective dynamics, we consider a weakly coupled atom-field system in the dispersive
limit, in which the qubit and the cavity are far detuned compared to the coupling strength (λ =
g
∆ ≪ 1). In this regime, the atom and the field do not exchange energy directly. To obtain the
effective Hamiltonian and dissipator, we use the method of small unitary rotations [10,15]. The

following unitary operator Û = exp[λ(â†σ̂−− âσ̂+)] is used to transform Ĥint → Ĥeff = ÛĤintÛ
†.

Using the standard expansion eλABe−λA = B + λ[A,B] + λ2

2! [A, [A,B]] + ... and keeping terms
up to second order in λ, it is easy to show that the effective system Hamiltonian has the form

Ĥeff = ∆â†â− g2

∆

(
â†âσ̂z +

σ̂z
2

+
1

2

)
. (2)

Following the same procedure, one can show that the effective ME is given by

d

dt
ρ̂eff(t) = −ı

[
Ĥeff , ρ̂eff

]
+γ

(
nth + 1

)[
L
[
σ̂−, σ̂+

]
ρ̂eff +

g

∆
L
[
âσ̂z, σ̂+

]
ρ̂eff +

g

∆
L
[
σ̂−, â

†σ̂z
]
ρ̂eff

+
g2

∆2
L
[
âσ̂z, â

†σ̂z
]
ρ̂eff − g2

∆2
L
[
σ̂−,

(
â†â+ 1

)
σ̂+ + 2â†2σ̂−

]
ρ̂eff

− g2

∆2
L
[(
â†â+ 1

)
σ̂− + 2â2σ̂+, σ̂+

]
ρ̂eff

]
+γnth

[
L
[
σ̂+, σ̂−

]
ρ̂eff − g

∆
L
[
σ̂+, âσ̂z

]
ρ̂eff

− g

∆
L
[
â†σ̂z, σ̂−

]
ρ̂eff +

g2

∆2
L
[
â†σ̂z, âσ̂z

]
ρ̂eff − g2

∆2
L
[
σ̂+,

(
â†â+ 1

)
σ̂− + â2σ̂+

]
ρ̂eff

− g2

∆2
L
[(
â†â+ 1

)
σ̂+ + â†2σ̂−, σ̂−

]
ρ̂eff − g2

∆2
L
[
σ̂+, σ̂−

]
ρ̂eff

]
. (3)

In the next subsection, we transform the above equation to include classical laser driving.



2.2. External Driving
In order to include the effects of external driving in Eq. (3), we first define a unitary operator

Û1 = Û Û0Û
† where Û0 = e−ıασ̂x and α = ϵτint. Here, ϵ is the driving amplitude, τint is the

interaction time and σ̂x is the Pauli matrix. A transformation to the rotating frame of the laser

driving is made with a unitary operator Û1, applied to the density matrix ρ̃ = Û1ρ̂eff Û
†
1 . The

next step is to omit the counter-rotating terms (RWA) and write the ME in the Fock space
representation using ρ̃ =

∑
k ρ̃k ⊗ |k⟩⟨k|. After some algebra one can show that the ME takes

the following form

d

dt
ρ̃k(t) = ı

g2

∆

[
J̃k, ρ̃k

]
+γ(nth + 1)

g2

∆2
(k + 1)(α̂zy − sin2 α1)ρ̃k+1(α̂zy − sin2 α1)

+ γnth
g2

∆2
k(α̂zy + sin2 α1)ρ̃k−1(α̂zy + sin2 α1) + γ(k − nth)

g2

∆2
(Âρ̃k + ρ̃kÂ)

+ γnth
g2

∆2
(k + 1) sin4 αρ̃k+1 + γ(nth + 1)

g2

∆2
k sin4 αρ̃k−1 − γ

g2

∆2
X ′

kρ̃k. (4)

Here, the operator α̂zy is given by α̂zy = cos 2ασ̂z + sin 2ασ̂y, where σ̂z and σ̂y are Pauli

matrices. Also the operator Â is given by Â = sin2 α α̂zy, X
′
k = (2nth +1)X̄ +nth1, where X̄ =

sin4 α(k+1)1+sin4 αk1+k1, 1 is a 2 by 2 identity matrix and J̃k = 3
2 sin

2 αk1+(k+ 1
2)α̂zy+

1
21.

We are interested in the analytical expression of the observables. In order to achieve this, we
transform Eq. (4) into a basis where its possible to solve it analytical using generating functions.
By defining σ̂′

z = cos 2ασ̂z + sin 2ασ̂y, σ̂
′
x = σ̂x and σ̂′

y = − sin 2ασ̂z + cos 2ασ̂y, it is straight
forward to verify that [σ̂′

x, σ̂
′
y] = 2ıσ̂′

z. Hence, one can derive the following transformation

operator Û2 =

(
cosα ı sinα
ı sinα cosα

)
. Using the above operator Û2, we can transform Eq. (4) to a

new basis ρ̂k = Û †
2 ρ̃kÛ2 and write the transformed ME as follow

d

dt
ρ̂k(t) = ı

g2

∆

[
Ĵk, ρ̂k

]
+γ(nth + 1)

g2

∆2
(k + 1)(σ̂z − sin2 α1)ρ̂k+1(σ̂z − sin2 α1)

+ γnth
g2

∆2
k(σ̂z + sin2 α1)ρ̂k−1(σ̂z + sin2 α1) + γnth

g2

∆2
(k + 1) sin4 αρ̂k+1

+ γ(nth + 1)
g2

∆2
k sin4 αρ̂k−1 − γ

g2

∆2
X ′

kρ̂k + γ(k − nth)
g2

∆2
(σ̂zρ̂k + ρ̂kσ̂z). (5)

The exact solution of the above equation (5) for the zero temperature case (nth = 0) will be
outlined in the next section.

3. General Solution
In this section, we write Eq. (5) in the matrix elements form ρ

(i,j)
k (t) (i, j = 0, 1) and solve each

system analytically using the matrix generating function given by

ρ(i,j)s (x, t) =

∞∑
k=0

xkρ
(i,j)
k (t), (6)

where |x| ≤ 1. If ρ
(i,j)
s is known, the transformed matrix elements can be found from

ρ
(i,j)
k (t) =

1

k!

∂k

∂xk
ρ(i,j)s (x, t)

∣∣∣∣∣
x=0

. (7)



The generating function system of equations are solved using the method of characteristics with
some arbitrary initial conditions. If we assume that at t = 0 the walker is localized at site p

(p ∈ Z) with ρ̂(0) =

(
a z
z̄ b

)
⊗ |p⟩⟨p|, where a + b = 1, (a, b) ∈ R≥0 and z ∈ C, it is easy to

show that ρ
(0,0)
s (x, 0) = axp and ρ

(1,1)
s (x, 0) = bxp. Using the method of characteristics and the

initial conditions, one can show that the analytic expression for the populations of the ground
state and excited state (for nth = 0) are given by

ρ
(0,0)
k (t) =

1

k!

k∑
q=0

(
k

q

)
a cos 2α(sin4 α− cos4 αe−α′t cos 2α)q(1− ae−α′t cos 2α)k+p−2q(sin4 α)k−q

× (cos4 α)p−q (p+ k − q)!

(p− q)!
(−1)−q(cos4 α− sin4 αe−α′t cos 2α)−p−k+q−1θ(p− q), (8)

and

ρ
(1,1)
k (t) =

1

k!

k∑
q=0

(
k

q

)
b(cos 2α− 2)(sin4 α− (sin4 α+ 1)2e−α′(2−cos 2α)t)q(sin4 α)k−q

× (1− ae−α′(2−cos 2α)t)k−2q+p (p+ k − q)!

(p− q)!
(sin2 α+ 1)2p−2q(−1)p+k−2q

× (cos4 α− 2− sin4 α(1− e−α′(2−cos 2α)t))−p−k+q−1θ(p− q), (9)

where
(
k
q

)
denotes the binomial coefficient, α′ = γg2

∆2 and θ(l) is the Heaviside step function

θ(l) =

{
1, l ≥ 0

0, l < 0.

Using Eqs. (8) and (9), we obtain the probability to find the walker at site k, Pk(t) = ρ
(0,0)
k +ρ

(1,1)
k .

After sufficiently long period of time,
∑∞

k=0 ρ
(0,0)
k (t → ∞) = a,

∑∞
k=0 ρ

(1,1)
k (t → ∞) = b,

assuming α ≥ 0, the system settles down into the initial condition,
∑∞

k=0 Pk(t) = 1. The
probability to find the walker at site k is shown in Fig. 1 for various parameters. The off-diagonal

elements (the coherences) are complex conjugates of each other, ρ
(1,0)
k =

(
ρ
(0,1)
k

)∗
. Following

the same steps with initial condition ρ
(0,1)
s (x, 0) = zxp, the solution for the off-diagonal element

is given by

ρ
(0,1)
k (t) = e−γτzcosec(τ)(tan(τ))−p

(cosec4α
2γ

)p−k 1

k!

k∑
q=0

(
k

q

)
(p+ q)!

(p− k + q)!

(
cot(τ)λ− w

)−p−1−q

×
(
(w2 + λ2) tan(τ)

)p−k+q(
λ+ w tan(τ)

)k−q
θ(p− k + q). (10)

Here w = 2ı∆ − 1 − 2γ sin4 α, λ =
√

4γ2 sin4 α(sin4 α− 1)− w2, τ = 1
2 tελ where ε = g2

∆2 , and
z = x + ıy. Eqs. (8), (9) and (10) provide a complete solution for the matrix elements of the
density operator Eq. (5). Hence, it is straight forward to transform these expressions ((8), (9)
and (10)) to the original basis and construct the observables of interest (see Figs. 2, 3) using
Wk(t) = Tr[σ̂W ρ̃k(t)] i.e., Wk ∈ (Xk, Yk, Zk) (σ̂W is the corresponding Pauli matrix).



(a) (b)

Figure 1: (Color online) The probability Pk(t) of finding a walker at site k as a function of
dimensionless time γt for different Fock states (stated in the legend). The initial sites are p = 25
(a) and p = 35 (b), with α = 0.3, 0.2, respectively. Other parameters are set as γ = 0.1, g = 0.4
and ∆ = 1.

(a) (b)

Figure 2: (Color online) The real part Xk(t) of the coherences are shown as a function of the
dimensionless time γt for different Fock states (stated in the legend). The initial sites are p = 9
(a) and p = 15 (b), with α = 0.4, 0.2, respectively. Other parameters are γ = 0.1, g = 0.3 and
∆ = 1.

4. Conclusion
In this contribution, we have proposed a scheme for implementing OQWs in a cavity QED setup.
We derived the generalized master equation for this OQW from the effective master equation.
Further, we solved the generalized master equation using generating functions and constructed
the analytic expressions for the populations for the zero temperature case. In order to verify our
results, the dynamics of the observables are presented for various parameters and their behavior
corresponds to the usual physical dynamics, which display collapses and revivals in the evolution
of the system observables. Future work will show how Eq. (4) implements an OQW on Z+ at
discrete driving time steps.



(a) (b)

Figure 3: (Color online) The population inversion Zk(t) is shown as a function of dimensionless
time γt for different sites k (stated in the legend). The initial sites are p = 10 (a) and p = 5 (b),
with α = 0.4, 0.7, respectively. Other parameters are γ = 0.1, g = 0.4 and ∆ = 1.
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