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Abstract. We present results of the energies and energy differences of the quantum harmonic
oscillator as well as the quantum anharmonic oscillator at quartic coupling constants of different
magnitudes. These observables are computed using the Markov Chain Monte Carlo approach
(Metropolis Algorithm) and are compared to results obtained using matrix elements methods
at various basis sizes. We illustrate the consistency in the two methods and show that for the
anharmonic oscillator, a sufficiently large basis size is required with increasing energy in order
for the matrix result to converge to the lattice result. We also show that large quartic coupling
constants are more sensitive to the truncation of the basis size.

1. Introduction
In classical mechanics, the harmonic oscillator is a very popular example of a restoring force
acting on an object about its equilibrium position, and has many applications. In a one
dimensional case, one can consider a particle of mass, m, attached to a spring and experiencing
a restoring force as described by Hooke’s law [1], F = −kx. The corresponding potential
energy is given by E = kx2/2, has a parabolic shape and describes the continuous energies
that the particle can attain during its oscillation. The quantum harmonic oscillator is the
corresponding analogue of the harmonic oscillator in quantum mechanics and is characterized
by the Schrodinger equation [2],
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where the first term in the Hamiltonian (Ĥ) is the kinetic term and the second term is the same
potential we saw in the classical analogue, with ω =

√
k/m and describes the natural frequency

of the oscillator. Various analytical methods have been formulated to solve the above equation
for the energy eigenvalues, and they show that unlike in the classical case, the energies of the
quantum harmonic oscillator are discrete, quantized and given by [3];

En =
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)
ℏω (2)

where n = 0 corresponds to the ground state. Note that this ground state energy is not equal
to zero, a consequence of the uncertainty principle [4].



In general, molecular vibrations with arbitrary potentials can be approximated as harmonic
potentials around a stable equilibrium through expanding the potential as a Taylor series. The
harmonic oscillator describes such an expansion truncated at second order [5]. At higher order,
the potential contains quartic terms and the motion becomes that of an anharmonic oscillator.
The corresponding Hamiltonian with a quartic term, in one dimension is given by [6],

Ĥ = − ℏ2
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2
+ λx4 (3)

where λ is the coupling constant of the quartic (anharmonicity) term.
Unlike the harmonic oscillator which has exact analytic solutions, the anharmonic oscillator

cannot be solved analytically and we need to resort to numerical methods. In this paper, we
employ the Markov Chain Monte Carlo technique to compute the exact, as well as energy
differences of the first few lowest energies of the one-dimensional anharmonic oscillator while
varying the coupling constant of the quartic term. We compare these lattice solutions to
corresponding results when using matrix elements at varying basis size to explore the effect
of basis size truncation on the accuracy of the numerical result.

2. Path Integrals and the Metropolis Algorithm
A starting point in formulating an approach to numerically solve the quantum anharmonic
oscillator on the lattice is to build an understanding of how the state of a particle evolves with
time. That is, given a particle at (x0, t0), what’s the probability of finding it at (xf , tf ), where tf
is some later time. Schrodinger and Heisenberg formulated solutions to this problem employing
the eigenstates of the Hamiltonian. As an alternative, Feynman formulated the path integral
approach to quantum mechanics [7], motivated by the work of Paul Dirac suggesting that a
Lagrangian formulation is more fundamental than a Hamiltonian one.

The main idea behind the path integral formulation is the equivalence of the transition
probability amplitude, < ψ(xf , tf )|ψ(x0, t0) > between any two points and the exponential of the
classical action, exp{iS[x(t)]} of the trajectory. Given that a particle cannot take a well-defined
path between any two points, Feynman showed that the total transition probability amplitude is
given by the sum of the amplitudes of all the possible paths that the particle can take between the
two points. We then define the imaginary time propagator (which fully describes the evolution
of a system with time) between the two spacetime points as the probability transition amplitude
between the wavefunction evaluated at those two points,

U(xf , τf ;x0, τ0) = ⟨ψ(xf , τf )|ψ(x0, τ0)⟩ (4)

= ⟨xf |e−Ĥ(τf−τi)/ℏ|x0⟩ (5)

=
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where L is classical Euclidean Lagrangian, and we perform the integration over all possible
trajectories between the two spacetime points. Notice also, the Wick rotation (change in the
time parameter) t = −iτ , where τ = ℏ/kBT is the ‘imaginary time’ and allows for a direct
comparison to the partition function in statistical mechanics. A complete derivation of the
above path integral can be found in Ref. [8].

We then use the Metropolis Hastings algorithm [9, 10] to generate the many different paths
on the lattice, that can be used to compute the propagator. A discrete time lattice with Nτ

sites (lattice points in the time direction), employing periodic boundary conditions (to avoid
rejecting paths affected by lattice site edges) is used. Euclidean time increments δτ are used,
such that the lattice points are given by xi = iδτ , with i = 1, ..., Nτ . In order to perform these



calculations computationally, we start by expressing our equations in dimensionless form by
setting ℏ = c = 1 such that the discretised action for the anharmonic oscillator is given by [6],
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Nτ∑
i=1

[
m̃

2
(x̃i+1 − x̃i)

2 +
m̃w̃2x̃i

2

2
+ λ̃m̃2w̃3x̃i

4

]
(7)

x̃i =
xi
δτ
, m̃ = mδτ, ω̃ = ωδτ (8)

where x̃i, m̃, ω̃ and λ̃ are dimensionless variables.
The Metropolis algorithm requires as an input an array with Nτ entries containing the initial

path between the two points. This initial path can be set to an array of zeros (a cold start),
or an array of random numbers (a hot start). We also need to input a real number, h the
target interval which determines the acceptance rate in the simulation (i.e. how many paths
should be accepted/rejected on average), as well as the various parameters appearing in the
action. Every time we traverse through the lattice (one sweep), we produce one trajectory with
real coordinates (x1, ..., xNτ ) in Euclidean time, and these coordinates have probability density
ρ[{xi}] ∼ exp{−S̃(x̃i)} [11]. This procedure is repeated many times to create an ensamble of
paths in Monte Carlo time, forming a Markov Chain and this ensemble of paths is then used for
analysis.

Prior to taking any measurements that will be used for analysis, one has to discard the
first ‘few’ paths that are generated before the system thermalises because these paths are not
representative of the equilibrium distribution of the system. Given that once the random number
generator used to produce these paths is seeded, the produced paths are correlated. To reduce
the effect of these correlations in the measurements, one also needs to discard a certain number
of paths between any two subsequent measurements used for analysis. These correlations lead
to increased uncertainties in the measurements and can be quantified using the autocorrelation
time [12].

In Figure 1a, we show the acceptance rate for a step size δτ = 1 at various quartic coupling
constants. Generally, an acceptance rate of 50 − 60% is sufficient, and if the acceptance rate
is too low then most paths will be rejected thus resulting in longer simulation times. A plot of
the acceptance rate as a function of the parameter h allows one to pick the a value to achieve
the desired acceptance rate. We see that the parameter h is smaller for larger quartic coupling
constants. In Figure 1b, we show the thermalisation of ⟨x̂2⟩ for λ̃ = 1, δτ = 1 starting from a cold
start and this can be used to get a sense of the number of paths to discard during thermalisation
before taking measurements.

We then make use of these measurements (ensambles of paths) to compute various quantities
of interest. The ground state energy is computed from the correlation functions of the position
operator x̂ [13],

E0 = mω2⟨x̂2⟩+ 3λ⟨x̂4⟩ (9)

while the energies are calculated as follows [14, 12];

E1 − E0 = −ℏ lim
τ→∞

[
d log[G2(τ)]

dτ

]
, G2(τ) = ⟨x̂(τ)x̂(0)⟩ − ⟨x̂(τ)⟩⟨x̂(0)⟩ (10)

E2 − E0 = −ℏ lim
τ→∞

[
d log[G4(τ)]

dτ

]
, G4(τ) = ⟨x̂(τ)2x̂(0)2⟩ − ⟨x̂(τ)2⟩⟨x̂(0)2⟩ (11)

where G2(τ) and G4(τ) are the connected two-point and four-point correlation functions
respectively.



(a) Acceptance rate for δτ = 1 (b) Thermalisation

Figure 1. The acceptance rate as a function of the target interval and the thermalisation of
⟨x̂2⟩ from a cold start.

3. Results
We start by looking at the oscillator energies, while varying the effective lattice spacing (a).
In Figure 1a, we compare ground state energy results of the harmonic oscillator to the known
analytical result. The key thing to notice is that MCMC result converges to the analytical result
of E0 = 1

2ℏω with decreasing lattice spacing. This is characteristic of lattice calculations which
converge to the correct result in the continuum limit (i.e. a→ 0). Unfortunately, it’s unrealistic
to gradually decrease the effective lattice spacing in simulations to it’s continuum value as this
is limited by computational resources. Instead, one uses the results obtained from a few lattice
spacings and extrapolates to the continuum limit. An example of this is shown in Figure 1b
where there’s no known analytical solutions of the energies of the anharmonic oscillator. In this
case, we perform calculations for various lattice spacings, then use cubic splines to extrapolate
to the continuum limit and we obtain the result E1−E0 from that procedure. The uncertainties
are computed using the Jackknife error analysis [15] with a bin size of 103.

(a) Harmonic oscillator (b) Anharmonic oscillator

Figure 2. Energy of the harmonic and anharmonic oscillator as a function of the effective
lattice spacing.

In Figure 3, we show the energies of the ground state and first excited state of the quantum
anharmonic oscillator respectively. These energies are computed using matrix elements with
varying basis size, and using the correlation functions of the position operator in the lattice



approach. On the lattice, the ground state energy is given by Eq. 9, while the first excited state
is obtained from adding E0 to the two-point connected correlation function in Eq. 10 which
gives E0 −E1. A graphical representation of this energy difference is shown in Figure 4, as well
as the energy difference of the second excited state and ground state, which is obtained from
the four-point connected correlation function in Eq. 11. In the case of the harmonic oscillator
(i.e. λ = 0), the Hamiltonian matrix is diagonal and we obtain the exact energy eigenvalues for
E0, E1 etc. irrespective of the basis size (recall that the basis size just gives you the number of
energy levels of interest). As we increase the quartic coupling, λ, to a non-zero value (where the
Hamiltonian matrix is no longer diagonal) while keeping the basis size the same (i.e. as low as
in the harmonic oscillator case), we obtain the correct result for lower energies but inaccurate
results for higher energies which are more sensitive to the truncation of the basis size.

The effect of the basis size on the accuracy of the measured energies is also observed as one
increases the quartic coupling. In general, the higher the quartic coupling, the more sensitive
the energies of the corresponding oscillator are to the truncation of the basis. The reason for this
sensitivity is that, the energy values of the various energy levels of the anharmonic oscillator
increase with λ i.e. Ei(λ = 0) < Ei(λ = 1) < Ei(λ = 2) etc., where i corresponds to the
energy levels. Thus increasing λ implies an increase in the energies, which are sensitive to the
truncation of the basis size. Looking at Figure 3 and 4, the effect of the basis truncation is clear
at large quartic coupling where the MCMC result is only consistent with the matrix result at a
high basis size.

(a) Ground State (b) First Excited State

Figure 3. Comparison of the energies of the harmonic and anharmonic oscillator computed
using lattice and matrix methods.

4. Conclusions
We have presented numerical results of the ground state and first two excited states energies
of the one-dimensional quantum anharmonic oscillator at varying quartic coupling constants.
These energies were computed on the lattice using the metropolis algorithm, which allows for
computational solutions to the path integral formulation of quantum mechanics. We compare
these lattice results to energy eigenvalues of the Hamiltonian obtained using the matrix elements
method for varying basis size.

We showed that one obtains accurate energies for the harmonic oscillator using both the
lattice approach and matrix elements even for a small basis size since the Hamiltonian is diagonal.
However, for the anharmonic oscillator, higher energies (excited states) are very sensitive to the



(a) E1 − E0 (b) E2 − E0

Figure 4. Harmonic and anharmonic oscillator energy differences computed using lattice and
matrix methods.

truncation of the basis size, thus one needs to increase the basis size to improve the accuracy of
the numerical result for excited state energies. In addition, we also showed that the larger the
quartic coupling constant (λ), the more sensitive the energies are to the basis size truncation.
This sensitivity with increasing λ is because the magnitude of the energies at various energy levels
increases with increasing λ. At a sufficiently large basis size, we show that the matrix elements
result converges to the results obtained on the lattice. While one can compute energies of even
higher excited states using matrix elements with a large basis size (limited by computational
resources), performing such a calculation on the lattice becomes increasingly difficult due to
increasing statistical fluctuations.
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