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Abstract. Decades of astronomical observations have shown that the standard model of
cosmology based on General Relativity - the closest we have to a standard theory of gravitation
- does not adequately describe our universe without the ad hoc introduction of dark matter and
dark energy to late-time cosmology and inflation to early-universe cosmology. This certainly
has created dilemmas in the cosmology, and the wider astronomy, community, and several
alternative models of cosmology and gravitation are being considered at the moment. Here I
will give a brief overview of the cosmological dynamics of the Rh = ct universe in the framework
of non-standard forms of matter and gravitation.

1. Introduction
Modern cosmology based on Einstein’s General Relativity (GR) theory in a maximally symmetric
spacetime, the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, describing a universe
that is homogeneous (all regions of space look alike, no preferred positions) and isotropic (no
preferred directions). The recent discovery of the accelerated rate of cosmic expansion has
inspired a wave of new research into the nature of gravitational physics. Whereas it is not
conclusively known what caused this recent cosmic acceleration, the prevailing argument is that
dark energy caused it. And new alternatives to dark energy and/or generalisations to GR abound
already, such as:

• Adding extra matter fields, e.g, scalar-tensor models, Modified Newtonian Dynamics
(MOND)

• Adding extra dimensions, e.g., Kaluza-Klein, Gauss-Bonnet models

• Higher-order theories, e.g., Hořava-Lifshitz, f(R) gravity theories

Melia’s Rh = ct spacetime model [1] is one such attempt to solve existing cosmological dilemmas
that ΛCDM has not resolved through a simple manipulation of the field equations in the existing
GR framework, i.e., without necessarily needed any modification or generalisation of the existing
gravitational action.

1.1. Matters of gravity
Relativistic physics treats gravity as a manifestation of spacetime curvature. There are
three different geometrical representations of spacetime curvature [2] leading to three possible
gravitational interpretations.



Figure 1. The geometrical meaning of curvature, torsion and non-metricity. Adapted from
Jimenez et al [2].

Figure 2. Three alternative gravitational descriptions defined in terms of the Ricci scalar
R, torsion scalar T and non-metricity scalar Q, and their modified f(R), f(T ) and f(Q)
generalisations. Adapted from Jimenez et al [2].



1.2. Standard cosmology
The standard (or “concordance”) cosmological model is based on the GR description of
gravitation the action of which is given by 1:

SGR =
1

2

∫
d4x
√
−g [R+ 2 (Lm − Λ)] . (1)

The Corresponding Einstein’s field equations:

Gµν + Λgµν = Tµν , (2)

with the first (geometric) term represented by the Einstein tensor, and the RHS of the equation
representing the energy-momentum tensor of matter fluid forms. The other two descriptions of
gravity (TEGR and STEGR) describe similar background expansion history provided:

• In TEGR theory
T = −6H2 , (3)

• In the STEGR theory
Q = 6H2 . (4)

Flat FLRW in GR has R = 6H2. The basic evolution equation for the scale factor a(t) of the
universe, obtained from the above field equations, is given by the Raychaudhuri equation

3
ä

a
= −1

2
(ρ+ 3p) , (5)

where ρ and p are the matter energy density and isotropic pressure, respectively. For ordinary
matter, the “active gravitational mass” (AGM)

ρ+ 3p > 0 . (6)

This means that ordinary matter will tend to cause the universe to decelerate, i.e., ä < 0.
But astronomical observations show that cosmic expansion is accelerating in recent epoch, i.e.,
ä > 0. A positive cosmological constant causes an accelerated expansion, so Λ could be a quick
fix provided that it dominates in the right-hand side of the following equation:

3
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a
= −1

2
(ρ+ 3p) + Λ . (7)

Some serious problems associated with the cosmological constant, among them the eponymous
cosmological constant problem [3] and the coincidence problem [4] challenge the choice of Λ as a
dark energy candidate.

The Big Bang model is by far the most successful theory in predicting many cosmological
features confirmed observationally expansion of space, origin of the cosmic microwave
background (CMB), Big Bang nucleosynthesis, galactic evolution and distribution, and the
formation of large-scale structures. However, there are still, broadly speaking, two serious
puzzles that remain unanswered in the standard Big Bang-based cosmology:

• Early-universe problems: horizon, flatness, structure/smoothness/homogeneity, and
magnetic-monopole problems. The suggested solution here is cosmic inflation, an early-
epoch cosmic acceleration.

1 We have used 8πG = 1 = c



• Late-time (large-scale) problems: rotational curves of galaxies plus large-scale structure
formation, and late-time cosmic acceleration. This is usually where the dark stuff comes in.
The former aspect is generally thought to be solved by introducing dark matter, and the
latter by dark energy (and often with the cosmological constant as the candidate for the
dark energy).

One other puzzling, but not as widely explored, problem is the Rh(t0) = ct0 coincidence (often
referred to as the synchronicity problem) 2: the observed equality of our gravitational horizon
Rh(t0) with the distance ct0 light has travelled since the Big Bang in ΛCDM cosmology.

Some potential new frontiers to address the above issues include

• Inhomogeneous cosmological models, such as LTB and Szkeres cosmologies

• Anisotropic cosmological models, such as Bianchi cosmologies

• Changing [fundamental] ‘constants’, such as evolving Λ and G cosmologies

• Modification/generalization of GR, such as f(R), f(T ), and f(Q) models of gravitation,
just to mention a few.

In addition, the Rh = ct model has recently joined the fray as a potential cosmological model
to address the synchronicity problem.

2. The Rh = ct universe
First proposed by Melia, the controversial Rh = ct model has the following characteristics
[1, 5, 6]:

Rh =
c

H
= ct , gravitational radius=Hubble radius (8)

a = t/t0 (9)

H = 1/t⇒ Ht = 1 ∀t (10)

This follows from the imposition of a vanishing total AGM

ρ+ 3p = 0 (11)

in the gravitational theory. No cosmological constant Λ as the source of dark energy is needed
in this model.

Among other things, this model resolves the so-called synchronicity problem: why is it true
that today, the dimensionless age of the universe

H0t0 ∼ 1? (12)

Problem: for standard forms of matter, ρ+ 3p > 0. So how can one get a vanishing AGM? This
is where modified models of gravitation come in as they naturally provide the extra “curvature”,
“torsion”, etc. . . fluid terms that contribute to the total AGM.

2.1. Solutions from f(R) gravity
f(R) models are a sub-class of fourth-order theories of gravitation:

Sf(R) =
1

2

∫
d4x
√
−g [f(R) + 2Lm] , (13)

2 Here t0 denotes the age of the universe since the Big Bang.



with corresponding generalized Einstein field equations:

f ′Gµν = Tmµν +
1

2
(f −Rf ′)gµν +∇ν∇µf ′ − gµν∇γ∇γf ′ . (14)

Here and in the following, f , f ′ , etc. . . are shorthands for the arbitrary function f(R) of the
Ricci scalar R and its first, etc. . . derivatives with respect to R. The sub/superscripts m and
R stand for the standard matter and curvature components, respectively. The background
curvature- fluid thermodynamics can be represented as:

ρR =
1

f ′

[
1

2
(Rf ′ − f)−Θf ′′Ṙ

]
,

pR =
1

f ′

[
1

2
(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 +

2

3
Θf ′′Ṙ

]
,

whereas the total energy density and pressure terms can be given by

ρ ≡ ρm
f ′

+ ρR , p ≡ pm
f ′

+ pR . (15)

Imposing the vanishing AGM condition in f(R) theories with energy and pressure terms
as defined above, together with the flat-FLRW relation R = 6H2 and matter solution for the
Rh = ct case

ρm =
ρm0

a3(1+w)
= 3H2

0Ωm0 (t0/t)
3(1+w) = αR3(1+w)/2 , (16)

where α ≡ 3t1+3w
0 Ωm06

−3(1+w)/2, we get the following second-order ordinary differential equation
(ode) in f:

2R2f ′′ − f + 2αR3(1+w)/2 = 0 . (17)

Here we have used the fact that Ṙ = −2
3RΘ = −

√
2
3R

3/2. Solving (17) gives

f(R) = c1R
1+
√
3

2 + c2R
1−
√
3

2 − 4α

1 + 12w + 9w2
R

3(1+w)
2 . (18)

This same solution was obtained in [7]. This exact f(R) solution was found [8] as a counter-
example of the shear-free conjecture [9], i.e., describes a universe with simultaneous expansion
and rotation. This then implies that the Rh = ct universe is a simultaneously expanding and
rotating spacetime solution! If one compares this result with the GR general condition [10], the
Rh = ct universe with ρ+ 3p = 0⇒ p = −ρ

3 ⇒ c2s = −1/3, which is not an allowed solution for
standard matter forms. This is an apparent contradiction and needs further investigation.

2.2. Solutions from f(T ) gravity
In the torsion (TEGR) interpretation of gravitation:

Sf(T ) =
1

2

∫
d4x
√
−g [f(T ) + 2Lm] , (19)

and the background curvature and total-fluid thermodynamics:

ρT =
1

f ′

[
1

2
(Tf ′ − f)

]
,

pT =
1

f ′

[
1

2
(f − Tf ′) + 2Hf ′′Ṫ

]
,



ρ ≡ ρm
f ′

+ ρT =
ρm
f ′

+
1

2f ′
(
Tf ′ − f

)
, p ≡ pm

f ′
+ pT =

pm
f ′

+
1

2f ′
(f − Tf ′) +

2Hf ′′Ṫ

f ′
. (20)

The vanishing AGM condition leads to the ode

2T 2f ′′ − Tf ′ + f + (1 + 3w)α(−T )
3(1+w)

2 = 0 , (21)

the solution of which is given by

f(T ) = c3T + c4
√
T − 2α

2 + 3w
(−T )

3(1+w)
2 . (22)

2.3. Solutions from f(Q) gravity
In the STEGR interpretation of gravitation:

Sf(Q) =
1

2

∫
d4x
√
−g [f(Q) + 2Lm] . (23)

The background non-metric and total-fluid thermodynamics are given by

ρQ = 3H2f ′ − f/2 = 1
2f ′ (Qf

′ − f)

pQ = f/2−
(

3H2 +
f ′′HQ̇

f ′

)
f ′ =

1

f ′

[
1

2
(f −Qf ′) + 2Hf ′′Q̇

]
,

ρ ≡ ρm
f ′

+ ρQ , p ≡ pm
f ′

+ pQ (24)

The vanishing AGM condition leads to the ode

2Q2f ′′ −Qf ′ + f + (1 + 3w)αQ
3(1+w)

2 = 0 , (25)

the solution of which is given by

f(Q) = c5Q+ c6
√
Q− 2α

2 + 3w
Q

3(1+w)
2 . (26)

3. Conclusion and outlook
The Rh = ct universe is a possible cosmological alternative to ΛCDM in explaining certain
issues such as the synchronicity problem. However, there are no sources of normal matter that
satisfy the vanishing AGM ρ + 3p = 0 condition within the standard GR framework. We have
demonstrated that his condition can be obtained from f(R), f(T ) and f(Q) gravity models
provided that the gravity Lagrangians are as given by Eqs. 18, 22 and 26. In particular, we
have shown that the f(R) solution that satisfies vanishing AGM corresponds to the shear-free
solution that allows a simultaneously expanding and rotating universe. Further work on other
cosmological aspects, such as perturbations, needs to be done to scrutinise these solutions for
cosmological viability
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