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Abstract. Examining the evolution equations of the couplings and soft-terms derived from the
two-loop renormalisation group equations in a five-dimensional minimal supersymmetric model
compactified on an S1/Z2 orbifold (which yields the standard four space-time dimensions),
different possibilities can be discussed. In this work we shall consider the limiting case of
superfields where the Standard Model matter fields are restricted to the brane. We will compare
our two-loop results to the results found at one-loop level, where in this model the power law
running in five dimensions and a compactification scale in the 10−103 TeV range has significant
effects on the running. We also show that the gluino mass may drive a large enough At to
reproduce the measured Higgs mass of 125 GeV and have a light stop superpartner below ∼1
TeV, as is preferred by the fine tuning argument for the Higgs mass.

1. Introduction
As one of the most successful results of the LHC experiment, the discovery of the Higgs boson,
with a mass of about 125 GeV [1, 2] has spawned many new models beyond the Standard
Model (SM) as its properties are probed more and more [3]. Amongst the researches into
supersymmetry (SUSY) breaking models in the framework of the Minimal Supersymmetric SM
(MSSM) recent results have been encouraging. However, the origin of SUSY breaking remains
the main unknown ingredient in supersymmetric theories [4, 5]. Another provocative extension
to the SM is that of extra dimensional theories, where these may provide a new mechanisms by
which to break SUSY and to solve the supersymmetric flavour problem [6]. The simplest amongst
these are five dimensional (5D) theories, which when viewed as an effective four dimensional (4D)
field theory with a cutoff are non-renormalisable, as many parameters such as gauge couplings,
Yukawa couplings etc. are sensitive to this cutoff scale [7]. 5D MSSMs, with their power law
running for a sufficiently low compactification radius R, generate at low energies a large enough
trilinear soft breaking term At to explain the observed Higgs mass [7].
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Figure 1. Running of the inverse fine structure constants α−1i (Q), for three different models
with compactification scale 10 TeV as a function of Log10(Q/GeV).

Using this 5D MSSM structure, one might be concerned that one-loop linear sensitivity to
the cutoff, behaving as ΛR, does not result in terms of the form (ΛR)2 at two-loop. As such
it is important to confirm the results and conclusions made at one loop, that are sensitive to
this scale, are still consistent and under control at two loops [8]. This is the aim of this current
proceeding, to begin the calculation and analysis of the two-loop contributions in such a model.
Therefore, the structure of this paper is as follows: In section 2 we outline the five dimensional
theory we will study here, in section 3 we explore the model, and in section 4 we present the the
calculation of the two-loop renormalisation group equations (RGEs). In section 5 we conclude.

2. The Five Dimensional MSSM
We define the 5D MSSM to be the field theory in 4D space-time times an interval of length
R in which the gauge fields and the Higgses (Hu, Hd) propagate in the fifth dimension, y,
whilst the matter fields in our model are restricted to the brane at y = 0. Therefore there are
no contributions from Kaluza-Klein (KK) excited state of the fermions on the brane. The
compactification of bulk fields produces towers of new particle states in the 4D theory at
Q > 1/R.

Even though gauge mediation is preferred for supersymmetry breaking (and some recent work
on gauge mediated supersymmetry breaking (GMSB) in a five-dimensional context can be found
in Refs. [4], the universality of squark massses in GMSB ultimately means that even though the
gaugino mediated limit [9] might allow for light squarks (and 5D RGE evolution allows for a
large At and the observed Higgs mass). We assume here that SUSY breaking occurs at the
unification scale, which is found by determining the scale at which g1 = g2 = g3, which is lower
when compared to the 4D MSSM due to the effects of compactification, as seen in figure 1.
As a result, we will be rather agnostic about the precise details of how SUSY is broken in this
proceeding, and our conclusions will be quite general. We do, however, have some minimum
requirements:

i) We use the Yukawa and gauge couplings at the SUSY scale (1 TeV) as inputs.

ii) We specify the value of the gluino mass, M3 at 1 TeV.

iii) We take the trilinear soft breaking terms, Au/d/e, to vanish at the unification scale.

iv) We specified µ, Bµ and the value of the sfermion masses at 1 TeV.

An interesting feature of the 5D MSSM is the approximate unification of gauge couplings [7, 10],
which are here calculated to two-loop and presented in figure 1.
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Figure 2. Running of the trilinear couplings Ai(Q), for two different models with
compactification scale 10 TeV, as a function of Log10(Q/GeV).

3. The Higgs mass at two-loop
To allow for the correct Higgs mass mh = 125 GeV, the electroweak parameters should be in
the range

tanβ ⊂ (5, 30), µ ≤ 1TeV, (3.1)

as presented in figure 3. We do not expect tanβ to be much larger, due to Bs → Xsγ flavour
constraints and µ being bounded by naturalness considerations of the renormalisation group
effects on the Higgs tadpole equations (minimisation of the scalar potential). As such, one may
achieve the correct Higgs mass with a lower stop mass scale. Using the (MSSM) two-loop Higgs
mass formula given in Ref. [11] figure 3 is generated.
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Figure 3. Contour plot of the Higgs mass at two-loops as a function of Xt.



4. The two-loop RGEs
The dominant two-loop correction to the gauge couplings in our model are proportional
to (2µ/Mc)

2, and these exclusively come from two-point diagrams with heavy KK mode
interchanges [8]. However, we have

PHH = PH
′

H′ = 0, and P
∑A∑B = 2g2[T (H) + C(Σ)]δAB = g2QδAB, (4.1)

where r = δAA is the dimension of the group, and the leading contribution to β
(2)
g̃ vanishes.

This cancellation reflects the fact that a model with N = 2 SUSY has to be renormalised only
at the one-loop level, i.e., the one-loop counter-terms render the theory finite at any order of
perturbation.

The sub leading two-loop correction, proportional to 2µ/Mc, where this correction does not
vanish because the underlying N = 2 SUSY is broken by the the interaction of the field in the
loops, can be written as [8]:

β
(2)
g̃ = 2g̃5C(V ){3[T (H) + T (H

′
)] + T (f) + C(Σ)− 9C(V )}

−2g3r−1C(H)

[
(4− 6)g2C(H)d(H) +

1

2
yHff

′
yHff ′ + (H ↔ H)

]
−2g3C(Σ)2g2[2T (H)− C(Σ)]− 2g3r−1C(f)

[
1

2
yfklyfkl − 2g2C(f)d(f)

]
, (4.2)

where d(Φ) is the dimension of the Φ representation and f stands for the chiral fermions. The
terms in the first line in equation (4.3) come from the possible Feynman diagrams. Diagrams with
exchanges of (H, V ) and (H ′, V ) and V fields have a factor of 3, since there are three different
ways to distribute the momentum along the fifth dimension (i.e., the KK modes) among the
fields in the internal loops. For diagrams with (f , V ) and (

∑
, V ) in the loops, there is only one

possible configuration, corresponding to the exchange of lower of V and
∑

fields, respectively.
The contribution in diagrams with a chiral fermion f , the generic expression in equation (4.2)
becomes

γ
(2)f
f = −h̃2fP

fc

fc − 2g2C(f)P ff + 2g4C(f)× [2T (H) + C(Σ)− 3C(V )]. (4.3)

The full set of gauge couplings in 5D at two-loop are given by:

β(2)g1 = g31

(199

25
g21 +

27

5
g22 +

88

5
g23 −

26

5
Y 2
u −

14

5
Y 2
d −

18

5
Y 2
e

)
, (4.4)

β(2)g2 = g32

(3

2
g21 + g22 + 24g23 − 6Y 2

u − 6Y 2
d − 2Y 2

e

)
, (4.5)

β(2)g3 = g33

(11

5
g21 + 9g22 − 40g23 − 4Y 2

u − 4Y 2
d

)
. (4.6)

The gaugino mass Parameters in 5D at two-loop can be written as:

β
(2)
M1

= 2g21

(398

25
g21M1 +

27

5
g22M1 +

88

5
g23M1 +

27

5
g22M2 +

88

5
g23M3 −

26

5
Yu(−Au +M1Yu)

−14

5
Yd(−Ad +M1Yd)−

18

5
Ye(−Ae +M1Ye)

)
, (4.7)

β
(2)
M2

= 2g22

(3

2
g21M2 + 2g22M2 + 24g23M2 +

3

2
g21M1 + 24g23M3 − 6Yu(−Au +M2Yu)

−6Yd(−Ad +M2Yd)− 2Ye(−Ae +M2Ye)
)
, (4.8)

β
(2)
M3

= 2g23

(11

5
g21M3 + 9g22M3 − 80g23M3 +

11

5
g21M1 + 9g22M2

−4Yu(−Au +M3Yu)− 4Yd(−Ad +M3Yd),
)

(4.9)
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d Yd +

3
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g22Y
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d Yd − 2Y †d YdY

†
uYu

)
, (4.10)

β
(2)
Yu

= Yu
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900
g41 −

9

4
g42 −

160

9
g43 +

1

10
g21g

2
2 +
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45
g21g

2
3 + 8g22g

2
3

−1

2
g21Y

†
uYu +

3

2
g22Y

†
uYu − 4Y †uYuY

†
uYu − 2Y †d YdY

†
d Yd
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1

10
g21Y

†
d Yd −

3

2
g22Y

†
d Yd − 2Y †d YdY

†
uYu

)
, (4.11)

β
(2)
Ye

= Ye
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g41 −

9

4
g42 +

9
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g21g

2
2 +

9
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g21Y

†
e Ye +

3

2
g22Y

†
e Ye − 4Y †e YeY

†
e Ye

)
(4.12)

and

β
(2)
Td

= Td
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160
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g21g

2
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2
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+

1
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g21TdY

†
uYu −

1
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g21M1YdY

†
uYu

−3
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g22TdY

†
uYu +

3

2
g22M2YdY

†
uYu −

3
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g21TdY

†
d Yd + g21YdTuYu

+
1
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g21M1YdY
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d Yd +

9

2
g22TdY

†
d Yd −
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(4.15)

5. Conclusions
In this proceeding we have explored the 5D MSSM at two-loop. We computed the full two
loop RGEs for all the supersymmetric and soft term parameters and compared these results to
those found at one-loop level in Ref. [7]. In our plots we have confirmed that a large At may
be generated at low energies from a UV boundary condition, where At is vanishing, through
power-law running.
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