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Abstract. In the wake of a perturbation, a n-dimensional black hole emits complex and
characteristic oscillations in spacetime known as “quasinormal modes” (QNMs). These black
hole QNMs have been used to explore beyond the Standard Model (BSM) scenarios and
quantum gravity conjectures. With the establishment of the LIGO-Virgo-KAGRA network
of gravitational-wave (GW) detectors, we find ourselves presented with the unprecedented
opportunity to compare computed QNMs against GW data from binary black hole merger
events. Encouraged by this development, we investigate whether QNMs can be exploited in the
search for signatures of extra dimensions. To address a gap in the BSM literature, we focus here
on higher dimensions with negative Ricci curvature. As a first step, we consider a direct space
formed from a 4D Schwarzschild black hole spacetime and a 3D nilmanifold (twisted torus); we
model the black hole perturbations as a scalar test field. We find that the extra-dimensional
geometry can be included in the QNM effective potential as a squared mass-like term µ. We
then calculate the corresponding QNM spectrum using three different numerical methods and
determine a possible upper bound for a detectable µ.

1. Introduction
Within the context of general relativity, Birkhoff’s theorem stipulates that the most general
spherically-symmetric vacuum solution of the Einstein field equations is the Schwarzschild metric

ds2BH = gBH
µν dxµdxν = −f(r) dt2 + f(r)−1 dr2 + r2(dθ2 + sin2 dϕ2) , (1)

where f(r) = 1− rH/r and rH = 2M is the Schwarzschild event horizon. This metric describes
an isolated, static, and neutral 4D black hole [1, 2] that is fully characterised by its mass M [3].

Astrophysically, black holes are perpetually in a perturbed state: even if somehow isolated
from the fields and matter in their immediate vicinity, they interact with the surrounding vacuum
through Hawking radiation. We may describe the perturbed black hole using the metric

g′µν = gBH
µν + δµν , (2)



where the unperturbed black hole metric gBH
µν is referred to as the “background” and the

“perturbations” δµν are considered to be very small (δµν ≪ gBH
µν ) at the lowest linear

approximation [4]. In the wake of the perturbation, the black hole will emit gravitational
radiation dominated by a discrete set of complex “quasinormal” frequencies (QNFs). The real
part of these QNFs represent the physical oscillation frequency and the imaginary part is the
inverse damping time. To model the perturbing field − known as the quasinormal mode (QNM)
− we may consider a scalar test field evolving on a fixed background that contributes negligibly
to the energy-density of the system.

Although dissipative systems are ubiquitous in nature, the black hole QNM boundary-value
problem is of particular interest due to the physical origin of its damping and the characteristic
black hole information that the QNFs convey.

The first of these features can be addressed by considering the black hole spacetime itself
through the classical lens, where the presence of an event horizon rH results in the irreversible
loss of gravitational radiation to the black hole interior. Since gravitational radiation also
cannot enter the system from beyond spatial infinity, we can then describe the QNM boundary
conditions as purely ingoing at the horizon and purely outgoing at spatial infinity. The system
is therefore not time-symmetric; the eigenvalue problem is non-Hermitian. In general, the
corresponding eigenfunctions are then not normalisable and do not form a complete set (see
reviews [4–6] for details).

The second feature, namely the relationship between QNMs and black hole characteristics,
rests on the fact that black hole parameters like mass and spin can be accurately predicted
from the QNF spectrum [7]. This has been a topic of interest within gravitational-wave (GW)
research [8] and has been demonstrated successfully by the LIGO-Virgo-KAGRA collaboration
[9–13].

Other more esoteric GW pursuits include searches for evidence of extra dimensions (see Ref.
[14]), wherein which QNMs have recently been considered for a 5D braneworld case [15]. Here,
we focus on an extra-dimensional setup in which a 4D Schwarzschild black hole is embedded into
a 7D M4 × N3 manifold, where M4 is the usual (3+1) flat spacetime and N3 is a negatively-
curved compact space. Specifically, N3 here is a “nilmanifold” (twisted torus) fully characterised
by the Heisenberg algebra, from which its geometric properties naturally follow (see section 2
for the nilmanifold’s construction, detailed further in Ref. [16]).

In this work, we determine an upper bound under which black hole QNMs may serve as
an appropriate probe for extra dimensions. This is made possible by expressing the extra-
dimensional components of our 7D Schwarzschild-nilmanifold setup as an effective mass-like
term in the QNM potential, and then exploiting QNM techniques to solve the corresponding
wave equation.

2. The potential of a Schwarzschild-nilmanifold setup
While the parameter space of flat and positively-curved extra dimensions has been probed and
constrained [17], models involving higher-dimensional manifolds with negative Ricci curvature
have remained under-explored. Phenomenologically, studies on compact negative spaces suggest
that these models could be used to address the hierarchy problem [18] and cosmological
observations [19, 20]. These motivate our interest in the manifold M4 ×N3.

To construct N3, recall that any Lie group G of dimension d can be understood as a d-
dimensional differentiable manifold. To make G compact, we quotient by the lattice Γ. A group
for which such a Γ always exists is called a “nilpotent group”. For d = 3, there is the trivial
abelian algebra that leads to a three-torus, as well as three different solvable algebras. Of these,
one is nilpotent: the Heisenberg algebra,

[Z1, Z2] = −fZ3 , [Z1, Z3] = [Z2, Z3] = 0 , (3)



where the structure constant f = −f3 12 is the “geometric flux” serving as the nilmanifold’s
“twist parameter”. The corresponding geometric properties can be relayed through the Maurer-
Cartan equation,

de3 = fe1 ∧ e2 , de1 = 0 , de2 = 0 , (4)

⇒ e1 = r1dy1 , e2 = r2dy2 , e3 = r3(dy3 +Nr1dy2) , (5)

where N = r1r2f/r3. In this way, the manifold is fully characterised and we can obtain the
most general minimal left-invariant metric,

ds2nil = δabe
aeb = (r1dy1)2 + (r2dy2)2 + (r3dy3 +Nr1r3dy2)2 (6)

From eqs. (1) and (6), we can construct our extra-dimensional manifold ds27D = ds2BH+ds2nil.
Exploiting the spherically-symmetrical context, the 7D propagating scalar field can be expressed
as

Ψs
nℓm(z) =

∞∑
n=0

∞∑
ℓ,m

ψsnℓ(r)

r
Y s
mℓ(θ, ϕ) Z(y

1, y2, y3) e−iωt , (7)

where spherical harmonics in (θ, ϕ) are denoted by (ℓ,m), s represents the spin of the field, and
n is the overtone number labelling the QNFs by increasing values of |Im{ω}|. To determine the
QNM behaviour, we first apply the Laplacian. For this unusual spacetime, we can account for
the higher dimensions by exploiting the separability of the metric. Recall that the Laplacian of
a product space is the sum of its parts, such that

∇2Ψ(z) =
(
∇2

BH +∇2
nil

)
Φs
nℓm(x)Z(y) . (8)

However, if we choose to encode the higher-dimensional behaviour through an effective mass
term representing a Kaluza-Klein tower of states, then we may describe the 7D scalar field
evolution through a 4D “massive” Klein-Gordon equation,

∇2
nilZ(y) = −µ2Z(y1, y2, y3) ⇒ 1√

−g
∂µ

(√
−ggµν∂νΨ

)
− µ2Ψ = 0 . (9)

Using the tortoise coordinate dr∗ = dr/f(r), we extract the radial component of the QNM to
produce a characteristic wavelike equation containing the QNF and the effective scalar potential,

d2ψ

dr2∗
+
(
ω2 − V (r)

)
ψ = 0 , V (r) =

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
+

2M

r3
+ µ2

)
. (10)

Within the QNM literature, a modified WKB approach informed by the QNM boundary
conditions [21, 22] serves as a well-established numerical method for solving eq. (10). At lowest
order [21], this WKB method yields

ω2(ℓ, n) ≈ V (r0)− i(n+ 1/2)
√

−2V ′′(r0) , (11)

where derivatives with respect to r are denoted by primes and r0 represents the peak of the
potential. For low values of n, eq. (11) demonstrates that the QNF can be closely determined
by the height of its associated potential barrier, as well as its second derivative [23, 24]. As
such, we may visualise the influence of the mass-like term on the QNF by studying the potential
(see figure 1). We observe that µ elevates the potential; as r∗ increases, the potential no longer
asymptotes to zero but instead approaches µ2. Beyond µ ≈ 0.6, the peak is smoothed out,
suppressing the potential barrier.
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Figure 1: The scalar potential of eq. (10) for increasing values of the mass-like parameter µ.
Note that for µ = 0, V → ∞ as r∗ → ∞ and the effective potential has a distinct peak. For
µ ̸= 0, V → µ2 as r∗ → +∞; the curve is smoothed as µ grows and the potential barrier is lost.

3. Computing the QNF spectrum for the Schwazrschild-nilmanifold setup
From eq. (11), we observe that the QNF value is strongly influenced by the potential; from figure
1, we observe that for some critical µ, the QNM potential no longer retains its characteristic
bell-like shape. To determine this µ, we compute the QNF spectrum using a higher-order WKB
approach [22] and an analytical method wherein which we calculate QNFs from the inverted
Pöschl-Teller potential [25]. We also employ a technique put forth by Dolan and Ottewill that
solves eq. (10) with a novel, physically-motivated ansatz to produce QNFs as a series expansion
in inverse powers of L = ℓ + 1/2 [26]. The first two are well-known methods that rely on a
barrier-shaped QNM potential to be effective [27]. We have studied the third extensively in the
eikonal limit in Ref. [28]; here, we find that the QNF emerges as a function of both L and µ:

ω(L, µ) =
1

3
L− i

6
L0 +

[
3µ2

2
+

7

648

]
L−1 +

[
5iµ2

4
− 137i

23328

]
L−2

+

[
9µ4

8
− 379µ2

432
+

2615

3779136

]
L−3 +

[
27iµ4

16
− 2677iµ2

5184
+

590983i

1088391168

]
L−4

+

[
63µ6

16
− 427µ4

576
+

362587µ2

1259712
− 42573661

117546246144

]
L−5

+

[
333iµ6

32
+

6563iµ4

6912
+

100404965iµ2

725594112
+

11084613257i

25389989167104

]
L−6 .

(12)

Our results are summarised in table 1, for which we set ℓ = 2 and n = 0 to correspond to
the least-damped/longest-lived “fundamental mode” that dominates the QNM signal [4, 6, 9].
We find that the sixth-order WKB and the Dolan-Ottewill methods are in close agreement. We
can ascribe the deviations in the Pöschl-Teller results to the method’s stronger reliance on the
potential shape, where the Pöschl-Teller potential is known to match closest to the inverted
potential corresponding to a Schwarzschild black hole spacetime with a positive cosmological
constant [29].

From table 1, we observe that Re{ω} increases steadily with µ whereas Im{ω} decreases. As
µ approaches 0.7, there is a discernible change in the QNF behaviour: a large jump in both
the real and imaginary parts is observed for all three methods, with a pronounced difference



Table 1: We calculate the QNFs at n = 0 and ℓ = 2 for 0.0 ≤ µ ≤ 0.7 using the WKB technique
at O(V 6), the Pöschl-Teller (PT) method, and the Dolan-Ottewill (DO) expansion at O(L−6).

µ ω (WKB) ω (PT ) ω (DO)
0.0 0.4836− 0.0968i 0.4874− 0.0979i 0.4836− 0.0968i
0.1 0.4868− 0.0957i 0.4909− 0.0968i 0.4868− 0.0957i
0.2 0.4963− 0.0924i 0.5015− 0.0936i 0.4963− 0.0924i
0.3 0.5123− 0.0868i 0.5192− 0.0881i 0.5124− 0.0868i
0.4 0.5351− 0.0787i 0.5443− 0.0800i 0.5352− 0.0787i
0.5 0.5649− 0.0676i 0.5770− 0.0690i 0.5653− 0.0676i
0.6 0.6022− 0.0528i 0.6181− 0.0541i 0.6032− 0.0532i
0.7 0.1396 + 0.2763i 0.6695− 0.0312i 0.6500− 0.0343i

in the WKB result for µ = 0.7: a sudden drop in Re{ω} and shift from negative to positive
in Im{ω}. Mathematically, we can attribute this behaviour as evidence of a breakdown in the
methodology: since the local maximum is eradicated after µ = 0.6 in fig. 1, it is impossible to
carry out the WKB matching procedure beyond this µ value. This justification is supported by
the QNM literature for fields of large mass (see the WKB review by Konoplya [27]).

However, there is also the physical interpretation to consider. Massive QNMs for which
Re{ω2} > µ2 are “propagative” and behave similarly to their massless counterparts, whereas
QNMs for which Re{ω2} < µ2 are “evanescent” and contribute negligibly to the QNM spectrum
for a perturbed black hole. This shift from propagative to evanescent is characterised by a change
in sign in the imaginary part [24]. As µ increases, the QNMs transition from propagative to
evanescent; as the imaginary part goes to zero, the QNMs enter the “quasiresonance regime”
[23, 30], where the QNMs are arbitrarily long-lived. In this regime, the ingoing wave amplitude
at the event horizon of the black hole is considered much smaller than the amplitude far from the
black hole; energy no longer “leaks” from the system at spatial infinity and the QNMs behave
as standing waves [4].

In our extra-dimensional setup, the µ parameter serves as a manifestation of the extra
dimensions. The analysis of the QNM potential and corresponding QNF spectrum conducted
here demonstrates that only the “propagative” QNMs can be used as a probe in extra-
dimensional searches. This places an upper bound on µ, such that Re{ω2} > µ2. For a scalar
test field in the Schwarzschild black hole spacetime, we require that µ < 0.6.

4. Conclusions
In this work, we have considered a novel extra-dimensional setup comprised of a Schwarzschild
black hole embedded in a 7D product spacetime whose extra dimensions form a negative compact
space − specifically, a nilmanifold built from Heisenberg algebra. We have pursued a strategy for
an extra-dimensional search using QNMs. By positioning the extra-dimensional contribution as
an effective mass-like µ term in the QNM potential, we have demonstrated through a numerical
study a possible upper bound on this µ.

In an ongoing investigation based on the parametric deviation of GWs from the QNMs
predicted by general relativity, we suggest that this bound may be further constrained. Our
next immediate step is to subject the mass spectrum of the nilmanifold model studied in Ref.
[16] to this constraint in order to extract tangible bounds on the radius of the nilmanifold extra
dimensions herein constructed.
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