

Contribution ID: 183 Type: Oral Presentation

Structural and magnetic properties of $Co_{(1-x)}$ Cu_x Cr_2O_4 nanoparticles

Thursday, 7 July 2022 11:45 (15 minutes)

CoCr₂O₄ is a ferrimagnetic material with a cubic Fd₃m space group belonging to a normal spinel structure attributed to the large octahedral ligand field stabilization energy of Cr3+[1]. These spinels belong to a class of mixed oxides in which the Co²⁺ ions occupy the tetrahedral A sites and the Cr³⁺ ions occupy all of the octahedral B sites with the general formula AB₂O₄ [2]. Previous studies on spinel compounds have indicated that the Jahn-Teller (JT) effect is responsible for a structural distortion due to the presence of the Ni²⁺ and Cu²+ ions at tetrahedral sites. This distortion is caused by the elimination of the orbital degeneracy, resulting in an ordering of the d orbitals and a lowering of the crystal lattice symmetry [3, 4, 5]. In the present work Cu-substituted cobalt ($Co_{(1-x)}Cu_x$ Cr_2O_4 , with x=0.10, 0.50, and 0.90) nanoparticles were synthesized by sol-gel [6] method and calcined at 500 °C. Rietveld refinement of the powder x-ray diffraction (XRD) patterns confirm that the structure is dependent on x, changing from cubic for $Co_{0.90}Cu_{0.10}Cr_2O_4$, to a mixture of cubic and tetragonal for $Co_{0.50}Cu_{0.50}Cr_2O_4$, and pure tetragonal for $Co_{0.10}Cu_{0.90}Cr_2O_4$. This is in agreement with what is expected considering the structures observed in CoCr₂O₄ and CuCr₂O₄ [7, 8]. The crystallite size (D) was found to be 8 ± 2 nm ($Co_{0.90}Cu_{0.10}Cr_2O_4$), 9 ± 2 nm ($Co_{0.50}Cu_{0.50}Cr_2O_4$) and 8 ± 2 nm ($Co_{0.10}Cu_{0.90}Cr_2O_4$), respectively. The size distribution and morphology of the nanoparticles were determined using transmission electron microscopy. The particle sizes of 10±2 nm (Co_{0.90}Cu_{0.10}Cr₂O₄), 8±2 nm (Co_{0.50}Cu_{0.50}Cr₂O₄), and 26±2 nm (Co_{0.10}Cu_{0.90}Cr₂O₄), respectively, was obtained from the TEM. Magnetic properties of the synthesized nanoparticles were studied using a vibrating sample magnetometer. The ZFC and FC curve results show that the two different magnetic phase transitions at T_C = 94 K associated with long-range ferrimagnetic order, while at $T_S = 26$ K, a spiral magnetic structure is observed [9]. T_S is suppressed for the $Co_{0.50}Cu_{0.50}Cr_2O_4$ sample because of the cubic to tetragonal structural phase transition. The magnetization as a function of applied field measurements, $M(\mu_0 H)$, of Cu-doped CoCr₂O₄ nanoparticles indicate that the magnetic properties change from ferrimagnetic to paramagnetic behaviour [10]. The magnetic saturation (M_s) , remanence (M_r) , and coercivity (H_c) of the samples were obtained from the results of $M(\mu_0 H)$ and will be discussed.

References:

- 1. Tsurkan et al., 2018, Condensed Matter Material Science, 5605, 1-5.
- 2. Nadeem et al., 2020, Journal of Alloys and Compounds, 832, 155031.
- 3. Wang et al., 2019, Applied Physics letters, 115, 082903.
- 4. Mohanty et al., 2021, AIP advances, 11, 025113.
- 5. Ghosh et al., 2021, Material Science and Engineering B, 263, 114864.
- 6. Arshada et al., 2011, Journal of Alloys and Compounds, 509, 8378-8381.
- 7. Akyola et al., 2017, Physica B, 525, 144-148.
- 8. Paul et al., 2015, Journal of Alloys and Compounds, 648, 629-635.
- 9. Dutta et al., 2009, Journal of Applied Physics, 106, 043915.
- 10. Gingasu et al., 2015, Materials Research Bulletin, 62, 52-64.

Apply to be considered for a student; award (Yes / No)?

Level for award; (Hons, MSc, PhD, N/A)?

PhD

Primary author: Ms NAGARAJ, Shobana (University of Johannesburg)

Co-authors: Prof. SHEPPARD, Charles (University of Johannesburg); Dr MOHANTY, Pankaj (University of

Johannesburg); Prof. PRINSLOO, Aletta (University of Johannesburg)

Presenter: Ms NAGARAJ, Shobana (University of Johannesburg)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials