

SAIP2022

Contribution ID: 234

Type: Poster Presentation

Structure, optical and magnetic properties of combustion synthesized Ni-Cr doped ZnO

Structural, optical and magnetic properties of combustion synthesized $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$ and $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$ have been investigated. X-ray diffraction (XRD) analyses confirm that samples are in the hexagonal wurtzite structure. No impurity peaks where detected in $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$, while a weak secondary spike $ZnCr_2O_4$ phase $(2\Theta = 43^{\circ})$ was identified in $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$. Lattice parameters, obtained from Rietveld refinement, were found to be a=b= 3.2535 ± 0.0002 Å for both the samples, while c= 5.2132 ± 0.0003 Å for $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$ decreasing to 5.2129±0.0002 Å for $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$. These values are comparable with the standard data (PDF#36-1451). Diffuse reflectance spectra show weak absorption bands at 422, 610 and 660 nm, characteristic of tetrahedral Ni^{2+} ions in the ZnO lattice [1]. Band-gap values, calculated using the Kubelka–Munk function [2], was found to be 3.287 ± 0.003 and 3.272 ± 0.003 eV for $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$ and $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$, respectively. Magnetization as a function of field measurements, $M(\mu_0 H)$, was performed at room temperature using a vibrating sample magnetometer. The $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$ and $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$ samples show ferromagnetic (FM) and antiferromagnetic (AFM) behaviour, respectively. Point defects are the source for the obtained FM in $Zn_{0.96}Ni_{0.01}Cr_{0.03}O$. The exchange interaction between Ni^{2+} and/or Cr^{3+} dopants and formation of a $ZnCr_2O_4$ phase is responsible for AFM behaviour in $Zn_{0.90}Ni_{0.05}Cr_{0.05}O$. This study reveals that the Ni^{2+} and Cr^{3+} ions successfully substituted into Zn^{2+} sites at lower concentrations of Cr^{3+} ions, while at higher concentrations some of the Cr ions are in an octahedral rather than tetrahedral coordination causing the formation of secondary phase. Interestingly, in Ni-Cr doped ZnO, the weak FM behaviour is transformed to AFM behaviour depending on the Cr content.

Keywords: ZnO, Combustion synthesis, Rietveld refinement, Magnetic properties

References

- 1. J.J. Beltrán, C.A. Barrero and A. Punnoose, The Journal of Physical Chemistry C., Vol. 120, p.8969– 8978(2016).
- 2. N. Srinatha, K.G.M. Nair and Basavaraj Angadi, Physica B., Vol. 474, p.97-104 (2015).

Apply to be considered for a student ; award (Yes / No)?

No

Level for award;(Hons, MSc, PhD, N/A)?

N/A

Primary author: Dr HANDALAGERE SHANKARAPPA, Lokesha (University of Johannesburg)

Co-authors: Prof. SHEPPARD, Charles (Department of Physics, University of Johannesburg); MOHANTY, Pankaj (University of Johannesburg); PRINSLOO, Aletta (University of Johannesburg)

Presenters: Dr HANDALAGERE SHANKARAPPA, Lokesha (University of Johannesburg); PRINSLOO, Aletta (University of Johannesburg)

Session Classification: Poster Session

Track Classification: Track A - Physics of Condensed Matter and Materials