

Studying the Production of a Singlet Scalar at Future e^+e^- Colliders with Deep Neural Networks

Anza-Tshilidzi Mulaudzi, Abhaya Kumar Swain, Mukesh Kumar, Bruce Mellado

University of the Witwatersrand

Contents

Evidence of multi-lepton anomalies at the LHC

 \square Candidate of a new scalar boson at $m_S = 151.5$ GeV

Electroweak properties of the new scalar resonance

Monte Carlo Simulations

Optimization of the channels

Summary and conclusion

Evidence of Multi-lepton anomalies at the LHC

- The multi-lepton anomalies at the LHC are explained by the production of $H \rightarrow SS$ where H and S are new scalar bosons. It turns out that S has been found in association with DM, indicating that $H \rightarrow$ $S(\rightarrow \gamma\gamma, Z\gamma)S \rightarrow \chi\chi$.
- The combined results correspond to a 8.04σ significance.
- Data consistent with new bosons: one with a mass around 270 GeV and another around 151.5 GeV.

Candidate of the new boson at $m_S = 150 \text{ GeV}$

- Candidate for a new boson with a mass of 150 GeV has been reported by Wits and collaborators in 2021.
- The existence was confirmed from the kinematic regions of the γγ and Zγ channels and corresponding missing energy, di-jets and lepton, with a significance of 5.1 σ.

Electroweak Properties of the new scalar resonance

The Lagrangian for the model is presented as:

$$\mathcal{L} = \kappa_2 \frac{S}{2m_S} W^+_{\mu\nu} W^{-\mu\nu} + (\kappa_2 c_w^2 + \kappa_1 s_w^2) \frac{S}{4m_S} Z_{\mu\nu} Z^{\mu\nu} + 2c_w s_w \frac{S}{4m_S} (\kappa_2 - \kappa_1) Z_\nu F^{\mu\nu} + (\kappa_2 s_w^2 + \kappa_1 c_w^2) \frac{S}{4m_S} F_{\mu\nu} F^{\mu\nu}$$

$$g_{SWW} = \kappa_2, \ g_{SZZ} = (\kappa_2 c_w^2 + \kappa_1 s_w^2), \ g_{SZ\gamma} = c_w s_w (\kappa_2 - \kappa_1), \text{ and } g_{S\gamma\gamma} = \kappa_2 s_w^2 + \kappa_1 c_w^2$$

The Electroweak singlet will have the following partial decay widths into two on-shell electroweak bosons ($m_S = 151.5$ GeV):

$$\begin{split} \Gamma(s \to WW) &= \frac{1}{32\pi} g_{sWW}^2 m_s \sqrt{1 - 4x} (1 - 4x + 6x^2) \\ \Gamma(s \to ZZ) &= \frac{1}{64\pi} g_{sZZ}^2 m_s \sqrt{1 - 4x} (1 - 4x + 6x^2) \\ \Gamma(s \to Z\gamma) &= \frac{1}{32\pi} g_{sZ\gamma}^2 m_s (1 - x^2)^3 \\ \Gamma(s \to \gamma\gamma) &= \frac{1}{64\pi} g_{s\gamma\gamma}^2 m_s \end{split}$$

where
$$x = \frac{m_V^2}{m_S^2}$$

Monte Carlo Simulations

- The production of S was simulated using MG5@NLO.
- 500 000 signal and background events were simulated.

Kinematic distributions: $Z\gamma jj$ final state

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	10258	300875	18.7
SEL: THT > 140.0	8463.1 + / - 38.5	101870 + / -259	$\begin{array}{rrr} 26.515729 & +/- \\ 0.000369 & \end{array}$
SEL: $30.0 > E < 90.0$	8177.4 + / - 40.7	34920 + / -175	$43.75982 \ +/\text{-} \ 0.00109$
SEL: $30.0 > E < 90.0$	6220.4 + / - 49.5	22888 + / - 145	$41.11579 \ +/\text{-} \ 0.00171$
SEL: $40.0 > PT < 80.0$	5806.6 + / -50.2	18226 + / - 130	$43.00988 \hspace{0.1cm} + / \hspace{-0.1cm} - \hspace{-0.05cm} 0.00206$
SEL: $25.0 > PT < 80.0$	5087.1 + / - 50.6	11170 + - 103	$48.13267 \ +/\text{-} \ 0.00293$
SEL: $-1.1 > ETA < 1.1$	4858.5 + / -50.6	10267.7 + / - 99.6	47.9471 + - 0.0031
SEL: $-1.4 > ETA < 1.4$	4592.6 + / -50.4	9127.9 +/- 94.1	$48.07023 \ +/\text{-} \ 0.00335$
SEL: $90.0 > M < 170.0$	3334.4 + / - 47.4	4613.0 + - 67.4	$49.09348 \hspace{0.1cm} + / \hspace{-0.1cm} - \hspace{-0.05cm} 0.00497$

Kinematic distributions: $Z\gamma l^+ l^-$ final state

Kinematic distributions: $\gamma\gamma$ final state

Cuts	Signal (S)	Background (B)	S vs B
Initial (no cut)	0.0294	301410	5.36e-05
SEL: $THT > 140.0$	0.0262 + / - 0.0533	120535 + / - 268	7.55e-05 +/- 4.43e-07
SEL: $40.0 > E < 110.0$	0.018 + / - 0.084	29685 + / -163	1.04e-04 + /- 2.82e-06
SEL: $50.0 > E < 90.0$	0.0148 + / - 0.0858	9215.3 + / - 94.5	1.54e-04 + /- 9.31e-06
SEL: $50.0 > E < 90.0$	0.0103 + / - 0.0819	5297.0 + / - 72.1	1.42e-04 + /- 1.55e-05
SEL: $65.0 > PT < 115.0$	0.0102 + / - 0.0817	5162.6 + / - 71.2	1.43e-04 + /- 1.58e-05
SEL: $45.0 > PT < 80.0$	0.00977 + / - 0.08079	4401.2 + - 65.9	1.47e-04 + /- 1.84e-05
SEL: $30.0 > PT < 85.0$	0.00841 + / - 0.07748	2684.4 + / -51.6	1.62e-04 + / - 2.89e-05
SEL: -0.8 $>$ ETA < 0.8	0.00803 + / - 0.07641	2397.4 + / - 48.8	1.64e-04 + /- 3.19e-05
SEL: $-1.0 > ETA < 1.0$	0.00772 + / - 0.07545	2225.0 + / - 47.0	1.64e-04 + /- 3.39e-05
SEL: $1.5 > ETA < 1.5$	0.00739 +/- 0.07440	2029.7 +/- 44.9	1.64e-04 + /- 3.67e-05
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.00739 + / - 0.07440	2029.7 +/- 44.9	1.64e-04 + /- 3.67e-05
SEL: _80.0 > M < 170.0	0.00736 + / - 0.07429	2014.0 +/- 44.7	1.64e-04 + /- 3.69e-05

Optimisation of the channels

- This is the motivation to introduce Machine Learning (ML) in this study.
- It makes use of a Deep Neural Network (DNN) to distinguish between signal and background processes through a Sequential Model.

Parameters:

 Optimiser, learning rate, neurons, batch size and epochs.

Anza-Tshilidzi Mulaudzi, University of the Witwatersrand

Hidden layers Input layer Output layer

Results (preliminary):

 $\gamma\gamma$ final state:

Batch size	23
Learning rate	0.000743
Neurons	48
Optimizer	Adamax
Epochs	273
Accuracy	97.8%

Conclusion and summary:

- The multi-lepton anomalies at the LHC are explained by the production of $H \rightarrow SS$ where H and S are new scalar bosons. It turns out that S has been found in association with DM, indicating that $H \rightarrow S(\rightarrow \gamma\gamma, Z\gamma)S \rightarrow \chi\chi$.
- The results show that the cross-section of these scalar resonances are large enough to be detected at future e^+e^- colliders.
- The use of machine learning helps us to distinguish between the signal and the background events and using hyperparameter optimisation, we were able to get a considerable accuracy for our models.
- \Box This motivates the search for the scalar resonances at future $e^+ e^-$ colliders.

Thank you!