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The ATLAS Tile-Calorimeter

* The Tile-Calorimeter (TileCal) is a sampling calorimeter which forms the central region of the Hadronic calorimeter of the ATLAS experiment.

e It performs several critical functions within ATLAS such as the measurement and reconstruction of hadrons, jets, hadronic decays of t -leptons,
and missing transverse energy. It also participates in muon identification and provides inputs to the Level 1 calorimeter trigger system.

* TileCal is composed of 256 wedge-shaped modules which are arranged azimuthally around the beam axis. A module consists of alternating steel
(absorber) tiles and plastic scintillating tiles (active medium) with a Super Drawer (SD) housing the Front-End (FE) electronics and the
Photomultiplier tubes located on its outer radius.

e A Low-Voltage Power Supply (LVPS), of which there is one per TileCal module, steps down 200 V DC, received from off-detector high-voltage
supplies, to the 10 V DC required by the front-end electronics.

* The LVPS's location can be seen in Fig.1 where they are housed within shielding (blue boxes) attached to the outer radii of the Tilecal modules.
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Fig.1 The ATLAS detector (Left). The ATLAS inner Barrel (Right) -J. Pequenao, Computer Generated image of the ATLAS calorimeter,(2008), https: // cds. cern. ch/ record/ 1095927
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™ FET — Field Effect Transistor
Phase-Il Upgrade LVPS Brick
OCP — Over Current Protection
. . . . . . OTP — Over Temperature Protection
* Inthe year 2029 the start of the operation of the High-luminosity Large Hadron Collider(HL-LHC) is planned . SD — Super Drawer
* The resulting HL-LHC environment has necessitated the development of new Low-Voltage Power Distribution
system amongst (See reference slides for details) numerous other upgrades in order to ensure the continued peak

performance of TileCal.

e See link for summary of the entire Phase-Il upgrade: Link: Upgrade of ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC:

* LVPS Function: Provide low-voltage power to the front-end electronics of the SDs.

* An LVPS consists of an Embedded Local Monitoring Board (ELMB), a Fuse board, a water-cooled heatsink, an internal cable set,
and eight transformer-coupled buck converters (Bricks).

* Tilecal contains 2048 LVPS Bricks (8 per SD).

* The Phase-ll upgrade Bricks are required to operate up until the end of RUN 5 (see slide 7).
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Fig.2 An LVPS inside TileCal. Fig.3 Inside an LVPS. Fig.4 High efficiency LVPS Brick top view . Fig.5 High efficiency LVPS Brick bottom view .
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https://pos.sissa.it/397/246/pdf

Phase-Ill Upgrade LVPS Brick

The Bricks transform bulk 200 V DC power to the 10 V DC
required by the on-detector electronics.

The Bricks monitor their input and output voltages,
currents as well as two temperatures T2 and T3.

A Tristate signal input is used to switch an individual Brick
on/off.

The Bricks make use of in-built protection circuitry.

The Bricks are iterative in design.

The TileCal Phase-Il upgrade requires the replacement of
256 LVPSs. This corresponds to 2048 Bricks (Plus approx.
10% spares).

The Brick Phase-Il upgrade addresses radiation hardness
requirements, new LV-distribution topology, efficiency,
thermal and reliability issues.

The production is equally divided between WITS and UTA
and will take place over the next three years. Quality
assurance testing (see Fig.7), of which Burn-in testing
forms a part, is to be undertaken as part of the
manufacturing process.
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FET — Field Effect Transistor

OVP — Over Voltage Protection
OCP — Over Current Protection
OTP — Over Temperature Protection
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Fig.7 Quality assurance testing of an LVPS Brick.
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Burn-in motivation

Access to the Bricks is limited to approximately once per year.
Therefore, any Bricks which fail will result in a portion of a module
being offline for a commensurate time emphasizing the
importance of the Brick reliability.

To maximize reliability, we are required to minimize their failure
rate. The failure rate of electronics can be represented by a
"Bathtub" curve (Fig.8).

Observe the undesirable failure rate within the infant mortality
region. Burn-in testing serves to address this by performing
accelerated ageing of the Bricks.

Accelerated aging causes Bricks that would fail during their early
lifetime to fail immediately thereby effectively screening out the
infant mortality failures.
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HASS - Highly Accelerated Stress Screening
HALT - Highly Accelerated Life Testing
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Fig.8 A Bathtub curve illustrating the failure rate as a function of time for electronic
products. Muhammad.N et al. doi:10.3390/mi11030272.
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Burn-in procedure

* The purpose of the Burn-in procedure is to accelerate aging of the
Bricks. This is achieved by operating the Brick within a sub-optimal
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Fig.9 Generalized Phase-Il upgrade Brick burn-in procedure thermal
profile..

environment (increased temperature and load) thereby stimulating e
similar failure mechanisms which appear during normal operation. <
* The Bricks operating temperature is increased by reducing the 5
cooling capacity of the heatsinks (Cooling plates) to which they are & 0
attached a0
* The Burn-in parameters are higher than nominal to ensure 20
accelerated aging but have to remain below the limits imposed by
the Bricks protection circuitry.
Parameter Burn-in Nominal Protection circuitry trip points
Operating temperature 60 35°C* 70° C
Load 5A 23A 6.9 A
Run Time 8 hours** - -

Table : V8.5.0 Brick Burn-in parameters, nominal Brick operating parameters and protection circuitry trip points.
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*The nominal operating temperature is heavily
influenced by the primary side MOSFETS. **
The Burn-in run time is currently undergoing
additional research. 8-hours is a legacy
parameter.



Burn-in Test Station

As depicted in Fig.10, the Burn-in station hardware is composed of a Personal Computer (PC), a 200 VDC power supply, various
custom Printed Circuit Boards (PCBs) designs, electronic components, connectors, wiring, Cooling Plates (CP), a water-chiller, and a
mechanical chassis known as the test-bed. (See reference slides for software overview)

The PCBs are subdivided into four types:

Main Board (MB) x1, responsible for communicating to the BIBs
and LIBs through an application-specific control and monitoring
program developed in LabVIEW.

Brick Interface Board (BIB) x8, interface between the MB and the
eight Bricks undergoing burn-in. They digitize performance metric
analog signals (such as output voltage) received from the Bricks.
The BIBs are also used to switch the Bricks on/off and act as a
switch for the 200 V DC input to a Brick.

Load Interface Board (LIB) x2, interface between the MB and DL
boards. As with the BIBs they digitize performance
measurements obtained from the DLs (voltage and current of the
brick output measured at the DL). The LIBs also control the load
current of a Brick via Voltage-Controlled Current Sink (VCCS)
located on the DLs

Dummy Load Board (DLB) x2, Make use of 4 VCCS that use high
precision op-amps and N-channel MOSFETs which are affixed to
the CPs to dissipate the heat generated
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Fig.10 Block diagram illustrating the burn-in station. Adapted from diagram by S. Moeyedi
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Water chiller set to 18 °C
Load setto5 A

Preliminary Burn-in results e

* The Burn-in station is in a mature stage.

* Preliminary hardware and software testing has commenced with favorable results observed.

* The fully operational burn-in station can be observed in Fig.11. Note that hotspot in the righthand corner which is due to the Dummy-
load MOSFETs converting the electrical energy received from the Brick into thermal energy which is to be removed.

* Ascan be seenin Fig. 12 the burn-in temperature parameter is being met with the hot spot being measured resulting from the primary-
side MOSFETs. It is worth noting that the thermistor (with associated temperature T2) utilized for the on-Brick measurements is located
adjacent to these MOSFETS and is utilized in the Bricks Over Temperature Protection (OTP) circuitry.

* The T2 temperature monitored during the Burn-in procedure is illustrated in Fig.13.

* The Burn-in temperature is stable with a mean value of 60.69°C and standard deviation of o0 = 0.19°C.

O 644
©
=]
@
R 61
£
2 m
m .
E p
E .
ﬂ.ll:l ﬂ.lﬁ I.Il:l 1.I5 Ell:l Elﬁ
. , . . . Time [5] 184
Fig.11 Thermal image of a Burn-in station Fig.12 Thermal image of a Brick undergoing burn-in Fig.13 Temperature stability plot of an LVPS Brick
undertaking burn-in of a Brick where the target is centered on the primary side undergoing burn-in testing.

MOSFETSs.

Ryan Mckenzie SAIP2022



Reference slides




The ATLAS detector
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The ATLAS detector
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Fig.15 The ATLAS detector
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https://cds.cern.ch/record/2285583?ln=en

PC = Personal Computer

B urn -i N Te St Stat i on GUI = Graphical User Interface

The Test station is composed of 4 elements which work together to facilitate the Burn-in of 8 Bricks per test cycle:

* Test bed — Required to contain the Burn-in station electronics, provide thermal and electrical insulation.

* Cooling system — Provides active cooling of the Bricks as well as the Dummy-Load boards. Allows for the control of the Bricks operating
temperature.

* Electronics — Allow for control and monitoring of the Bricks as well as the applied load.
* Software — Allows for the control of the custom electronics, the HV power supply as well as the storage and real time viewing of data.

Fig.18 Burn-in station test-bed.

@Test-bed PC @ DC power supply @ Water chiller @GUI

Fig.19 Burn-in test station.
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BIB = Burn-in Interface Board
LIB = Load Interface Board
MB = Main Board

Burn-in Test Station Software oL =Dummoad

* The Burn-in LabVIEW Application (BLA) and PIC firmware were originally
developed by Argonne National Laboratory (ANL) in 2006 for the V6
Brick.

Software required for the operation of a Burn-in station can be divided
into three categories:

* BLA provides control and monitoring of the Burn-in station and
communicates via a PC over USB to the MB and PVS60085MR HV power
supply. A PC runs the BLA responsible for Brick identification, Brick
selection, Brick control (starting, stopping and load current), Brick and
load performance measurements, HV control and monitoring, Brick trip
detection and automatic restart, Burn-in time management and data

logging.

* PIC firmware The MB embeds PIC firmware responsible for addressing
and communicating from the BLA to the Interface boards of the Burn-in
station.

* Power supply instrumentation driver - software routines that control
the programmable instrument.

PIC = Programmable Integrated Circuit
BLA = Burn-in Labview Application
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Fig.21 A simplified block diagram of the Burn-in station communication system..
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Burn-in Test Station GUI
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