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Abstract. A quantum study of the geometry-dependent light scattering by a metamolecule weakly driven
by a plane-polarized electric field is presented. The metamolecule consists of a semiconductor quantum dot
coupled to a silver nanoparticle. We show that a transition from bunching to antibunching of the scattered
photons by the metamolecule varies with the quantum dot–nanoparticle distance as the nanoparticle
geometry is tuned from prolate to oblate to spheric at constant particle volume. We attribute this to the
geometry-dependent quantum dot–nanoparticle coupling, localized surface plasmon resonance, and dipole
moment of the nanoparticle.

1. Introduction
Metal nanoparticle (MNP)–quantum dot (QD) systems are capable of emitting non-classical light when
they interact with the coherent light from a laser source [1–4]. These systems, also referred to as
metamolecules [4], have been proposed for various quantum control applications [1, 3]. Furthermore,
non-classical light can be used for carrying out quantum communication [5] and refractive index sensing
[6].

The QD is usually a photostable, semiconducting emitter, such as cadmium selenide (CdSe), with
tunable ground-state, exciton transition frequency, ωex, and spontaneous decay rate, γex [7], often
modelled as a two-level atom, as shown in Fig. 1(a). Previous studies have considered the interaction
between the localized surface plasmon resonance (LSPR) of a spherical MNP and the QD exciton
[1–4]. The interaction between the narrow-linewidth exciton and the broad-linewidth LSPR leads to
the appearance of a scattering spectrum with a Fano profile — an asymmetric lineshape with both
constructive (Fano peak) and destructive (Fano dip) interference regions [1, 2, 7].

Ridolfo et al. [1] have previously shown that the driven metamolecule can exhibit photon antibunching
— a quantum effect where a driven scatterer emits photons with a near-regular photocount pattern during
absorption–spontaneous emission events [8,9] — in the weak-driving limit. According to Waks et al. [2],
this is the limit where the modified Rabi frequency of the QD, Ω, is small compared to the enhanced QD
decay rate, Γ, as well as where the semiclassical approximation is valid. In this study, we investigated
the photon statistics of both spherical- and spheroidal-based metamolecules. In the latter, the QD exciton
interacts with the longitudinal LSPR of the spheroids, as shown in Fig. 1(b). The spherical-based
metamolecule is a special case of spheroidal-based metamolecules, whose photon statistics were studied
here to ensure that our model is in good agreement with Refs. [1, 2, 4]. In addition, we also investigated
the dependence of the photon statistics on the MNP-QD distance.



2. Theory
The approach proposed in Ref. [1] is used here to obtain the second-order correlation function for zero-
time delay, g(2)(0) — a statistical parameter that determines whether the scattered photons will arrive
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Figure 1. (a) Quantum electrodynamics (QED) model of the metamolecule. The MNP has a geometric factor
f , and plasmon modes with angular momentum numbers n = 0,1,2, ..., corresponding to the plasmon resonances
0,ω1

pl ,ω
2
pl , ..., with non-radiative decay rates 0,γ1

pl ,γ
2
pl , ..., respectively. The MNP is coupled to the QD through

the coupling rate, gn, which depends on both d and f , where d is the MNP-QD surface-to-surface distance. The
QD is modelled as a two-level atom (with ground state |g⟩ and excited state |e⟩), which undergoes a decay rate
enhancement, Γ, upon interaction with the MNP. The MNP operators, a and a†, obey the commutation rule,
[an,a†

m] = δnm, while the QD operators, σ and σ†, obey the anti-commutation rule, {σ ,σ†} = I2. (b) Model
geometries of the metamolecule. The incident electric field, E(t), is plane-polarized. We assume that the QD
dipole couples longitudinally to the MNP dipole, where their dipole orientations lead to maximum effect. Each
MNP is modelled as a Drude metal with a frequency-dependent dielectric function, ε(ω). The prolate has semi-
axes b×b×c,c> b, the oblate has semi-axes b×b×c,b> c, and the spheric MNP has an equivalent sphere-volume
radius, rs =

3√cb2, so that while the MNP geometry is tuned through f , its volume remains constant.

randomly (for coherent light), regularly (for antibunched light), or in bunches (for bunched light), at a
detector [9].

In plasmonic cavity QED, the weak-coupling condition, g < γpl , required for the observation of
photon antibunching is easily attainable [1, 3] due to the large value of γpl . Here, g is the dipole-dipole
coupling rate between the QD and the MNP, and γpl is the decay rate of the plasmon dipole mode. Hence,
we will determine g(2)(0) in the weak-coupling regime where the rotating-wave approximation is valid.

Finally, only the plasmon dipole mode (n = 1) in Fig. 1(a) will be considered here. The plasmon
multipolar modes (n ≥ 2) are dark modes which do not couple to the driving field but couple to the
dipole mode. The validity of the dipole approximation has been investigated in Ref. [3], where it was
shown that multipolar contributions are not negligible at short MNP-QD distances. However, in Ref. [1],
it was shown that the dipole approximation is valid in the distance regime d ≥ rQD +2 nm, where rQD is
the QD radius. Our study will keep to this latter regime.

The driving field of the laser is modelled as a cosine wave: E(t) = E0 cosωt, with amplitude, E0, and
driving frequency, ω . In the rotating-frame, the total Hamiltonian of the driven metamolecule is [1, 4]:

H = h̄∆pla†a+ h̄∆exσ
†
σ −E0µ(σ +σ

†)−E0(χ
∗a+χa†)+ ih̄g(σa† −σ

†a), (1)

where ∆pl = ωpl − ω and ∆ex = ωex − ω are the plasmon-laser detuning and exciton-laser detuning



frequencies, respectively, ωex = ωpl −δ , δ is the exciton-plasmon detuning, and

ωpl ≈

√
ω2

p

ε∞ + f εb
− γ2

p, γpl ≈ γp +
γ3

p

ω2
pl
, (2a)

χ ≈−ib( f +1)εb
√

2π h̄ε0cη(1−L), g ≈ bµ( f +1)
(c+d)3

√
cη [1−L(v)]

2π h̄ε0
, (2b)

where ωpl and χ are the dipolar LSPR and dipole moment of the MNP, respectively, µ = erQD is the
dipole moment of the QD, e is the electronic charge, h̄ is Dirac’s constant, ε0 is the permittivity of free
space, εb is the dielectric constant of the background medium, and ε∞ is the high-frequency dielectric
constant of silver, where we have ignored radiative damping since we are in the Rayleigh regime [1,10].
In Eq. 2a, ωp and γp are the Drude model parameters for the plasma frequency and free-electron damping
rate of silver, respectively, f = (1−L)/L, where L is the static geometric factor of the free MNP as given
in Ref. [10]. In Eq. 2b, c → c,b → b (prolate),c → b,b → c (oblate),c → rs,b → rs (sphere),η =
ω2

p/[2ωpl(ε∞ + f εb)
2], and L = L(v) = 1/3 for a sphere. For the spheroids, L(v) is the static geometric

factor of the MNP-QD system, with a radial coordinate, v, which we reported previously in Ref. [10].
The equation of motion describing the evolution of the expectation values of the MNP and QD

operators, a and a†, and σ and σ†, respectively, in the Heisenberg picture, is given by [3]:

d⟨O⟩
dt

=
i
h̄
⟨[H ,O]⟩+

γpl

2
(
a†[O,a]+ [a†,O]a

)
+

γex

2
(
σ

†[O,σ ]+ [σ†,O]σ
)
, (3)

from which we obtain the following coupled equations in the weak-driving limit:

d⟨a⟩
dt

=−
(

i∆pl +
1
2

γpl

)
⟨a⟩+g⟨σ⟩+ iΩpl, (4a)

d⟨σ⟩
dt

=−
(

i∆+
1
2

Γ

)
⟨σ⟩+ iΩ

(
1−2⟨σ†

σ⟩
)
, (4b)

d⟨σ†σ⟩
dt

=−Γ⟨σ†
σ⟩+ i

(
Ω⟨σ†⟩−Ω

∗⟨σ⟩
)
, (4c)

where we have applied the adiabatic approximation [2] (since γpl >> γex) to obtain Eqs. 4b and
4c. The coupled equations are solved at steady-state conditions to obtain the coherences ⟨a⟩,⟨σ⟩,
the excited state population of the QD ⟨σ†σ⟩, as well as the modified QD parameters Ω = Ωex(1−
(χ/µ)

√
F ) (near-field enhancement),Γ = γex +F γpl (Purcell effect),∆ = ∆ex −F∆pl (exciton shift),

where F = 4g2/(γ2
pl + 4∆2

pl) is the plasmon-induced enhancement factor, Ωpl = E0χ/h̄ is the driving
frequency of the MNP, and Ωex = µE0/h̄ is the Rabi frequency.

3. Results and Discussion
In the quantum picture, the dipole moments of the MNP and the QD are defined in terms of the
expectation values of their respective operators, as [4] χ⟨a⟩ and µ⟨σ⟩, respectively, and the total dipole
moment operator is P+ = χa+ µσ . At steady-state, g(2)(0) = ⟨(P−)2(P+)2⟩/⟨P−P+⟩2, and the
scattering cross-section is proportional to ⟨P−P+⟩, where P− = (P+)† [1, 3].

We have made use of the following model parameters of a CdSe QD and that of a silver nanoparticle
from Ref. [1]: rQD = 0.7 nm, γex = 50 µeV, γp = 53.26 meV, δ = 60 meV, εb = 3.0,ε∞ = 3.699. The
Rabi energy, µE0 = 0.01 meV, ensures that we are in the weak-driving limit: Ω << Γ. The MNP sizes
we considered are c = 13 nm, b = 12 nm (prolate), c = 12 nm, b = 13 nm (oblate), and rs ≈ 12.32
nm (spheric). The semi-axes of the spheroids are chosen such that: ( fspheroid − fsphere) <

1
8 fsphere. This

ensures that the respective aspect ratios of the spheroids are very close to that of the sphere, i.e, unity.
Some of our analytical results have been verified using the quantum simulation toolbox QuTiP [11].



The scattering cross-section of the metamolecule gradually decreases as the MNP geometry is tuned
from f = 2.2 (prolate) to f = 2.0 (spheric), as can be observed from the trend in the scattering peaks in
Fig. 2(a). In addition, the wavelengths corresponding to the scattering peaks — the Fano peaks (peaks
of the narrow and asymmetric lineshapes in Fig. 2(a)) and the plasmon peaks (peaks of the broad and
symmetric lineshapes in Fig. 2(a)) — undergo blueshifts as the MNP geometry is tuned from prolate
to spheric, as summarized in Table 1. This shows that each driven metamolecule is a good scatterer
depending on the energy region in Fig. 2(a). At far distances, d = 10 nm, the scattering spectra of
the metamolecule (broken coloured curves in Fig. 2(a)) approach those of the spectra of the free MNP
(broken black curves in Fig. 2(a)), due to huge decreases in the coupling rates.

(a) (b)

Figure 2. (a) Dependence of the scattering cross-section on the geometric factor, f , and on the MNP-QD distance,
d. (b) Second-order correlation function for zero-time delay, g(2)(0), as a function of the MNP-QD distance, d.

Table 1. The Fano peak (Fano resonance), the Fano dip (transparency dip), and the plasmon peak (∼plasmon
resonance) formed in the scattering spectrum of the metamolecule for each of the MNP geometries at d = 2 nm.
(Deduced from Fig. 2(a).)

ω (meV)
Metamolecule Fano peak Fano dip Plasmon peak
Prolate-based ∼ 2737.77 ∼ 2739.66 ∼ 2805.31
Oblate-based ∼ 2786.65 ∼ 2788.54 ∼ 2853.96
Spheric-based ∼ 2824.44 ∼ 2826.56 ∼ 2891.27

Fano interference is responsible for the Fano dips in the scattering spectra in Fig. 2(a), as well as the
resonances, ω ′

ex ≈ ωex −Fωpl (Fano resonance) and ω ′
pl ≈ ωpl +[g2/(ωpl −ωex)] (plasmon resonance).

The Fano dips are regions in-between the Fano peaks and the plasmon peaks where the metamolecule
is transparent to the driving frequency, i.e, frequencies where ⟨P−P+⟩ → 0. The interference effect
weakens at long distances (such as at d = 10 nm in Fig. 2(a)), leading to: ω ′

ex → ωex and ω ′
pl → ωpl since

g → 0. These resonances and the Fano dips are presented in Table 1 as driving frequencies, ω , where the
metamolecule exhibits different photon statistics as shown in Fig. 2(b).



When driven at the plasmon peak, the metamolecule emits only coherent light (g(2)(0)= 1), regardless
of the distance, d, and the MNP geometry (Fig. 2(b), blue-violet curves). This is because, driving
the metamolecule at the plasmon peak causes elastic scattering by the MNP to dominate the photon
statistics. Hence, the square of one-photon scattering probability, ⟨P−P+⟩2, is the same as the two-
photon scattering probability, ⟨(P−)2(P+)2⟩.

At the Fano dip, the scattered photons are heavily bunched (g(2)(0) > 1) at short distances, d ≤ 4
nm, and antibunched (g(2)(0)< 1) at 4 nm < d ≤ 8 nm, but coherent scattering (g(2)(0)→ 1) dominates
at long distances, d > 8 nm (Fig. 2(b), black curves). Though the scattering of an incident photon
is suppressed at the Fano dip due to destructive interference, a pair of simultaneous incident photons
will saturate the metamolecule’s ground state transition, thereby increasing the two-photon scattering
probability, ⟨(P−)2(P+)2⟩. Thus, at short distances, driving at the Fano dip leads to a bunching effect
because the metamolecule acts as a saturable scatterer. The transition from bunched to antibunched light
between d > 4 nm and d = 8 nm is due to a frequency shift, i.e, the Fano dip at d = 2 nm is a Fano peak
between d > 4 nm and d = 8 nm. At d > 8 nm, the Fano effect disappears and the response returns to
that of the MNP, which gives coherent scattering. In Fig. 2(b), the photon statistics of the prolate- and
oblate-based metamolecules are very similar irrespective of their different driving frequencies because
the difference in their geometric factors is not sufficient to cause a noticeable change in g(2)(0).

Driving the metamolecule at the Fano peak leads to the emission of antibunched light (g(2)(0)< 1) at
short distances, d ≤ 4 nm, which gradually transitions to coherent light (g(2)(0)→ 1) at long distances,
d > 4 nm (Fig. 2(b), red curves). At the Fano peak, driving the metamolecule at short distances leads
to an antibunching effect as a result of constructive interference, i.e, the spontaneous emission of an
absorbed incident photon is enhanced due to the Purcell effect [1,2]. The saturation of the metamolecule
by a photon pair leads to a decrease in the two-photon scattering probability, ⟨(P−)2(P+)2⟩, at the
Fano peak. As in the case of the dip, at the Fano peak, the transition from antibunched to coherent light
at long distances is due to the vanishing Fano profile in Fig. 2(a).

4. Conclusion
We have shown that the driving frequencies (Fano peak, Fano dip, and plasmon peak), the MNP-QD
distance, and the MNP geometry are all important factors to consider when designing metamolecules
that exhibit different photon statistics. Our model shows that for a constant MNP volume, the choice of
MNP geometry might affect the distance regimes where the metamolecule transitions from bunching to
antibunching of the scattered photons, but not those where it transitions from antibunching to coherent
emission. Fano interference makes it possible for the driven metamolecule to act as a saturable scatterer
for photon statistics control.
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