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Abstract. Decades of astronomical observations have shown that the standard model of
cosmology based on General Relativity - the closest we have to a standard theory of gravitation
- does not adequately describe our universe without the ad hoc introduction of dark matter,
dark energy to late-time cosmology and inflation to early-universe cosmology. This certainly has
created dilemmas in the cosmology and the wider astronomy community, and several alternative
models of cosmology and gravitation are being considered at the moment. Here I will give a
brief overview of the cosmological dynamics of the Rh = ct universe, a cosmological model
with a vanishing active gravitational mass. We will show that the model presents, inter alia,
a theoretical solution to the synchronicity problem in the framework of non-standard forms of
matter and gravitation.

1. Introduction
Modern cosmology based on Einstein’s General Relativity (GR) theory in a maximally symmetric
spacetime, the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric [1, 2], describing a
universe that is homogeneous (all regions of space look alike, no preferred positions) and isotropic
(no preferred directions). The recent discovery of the accelerated rate of cosmic expansion has
inspired a wave of new research into the nature of gravitational physics. Although it is not
conclusively known what caused this recent cosmic acceleration, the prevailing argument is that
dark energy caused it. Moreover, new alternatives to dark energy and/or generalisations to GR
already abound [3, 4, 5], such as:

• Adding extra matter fields, e.g, scalar-tensor models, Modified Newtonian Dynamics [6].

• Adding extra dimensions, e.g., Kaluza-Klein [7], Gauss-Bonnet [8], braneworld models [9].

• Higher-order theories, e.g., Hořava-Lifshitz [10], f(R) gravity [11] theories.

Melia’s Rh = ct spacetime model [12] is one such attempt to solve existing cosmological dilemmas
that the concordance Λ-Cold-Dark-Matter (ΛCDM) cosmology has not resolved through a simple
manipulation of the field equations in the existing GR framework. As we will show in the
following section, this model requires the vanishing of the active gravitational mass (AGM). It
is not possible to achieve a vanishing AGM in the standard description of GR if the universe
is filled with standard forms of matter. This is because the energy density and the pressure
of standard forms of matter are non-negative. Getting conditions for vanishing AGM in the
standard framework are among the sticking points of the Rh = ct universe, and the main
objective of this article is to provide a mechanism to achieve this in the framework of modified
theories of gravitation.

1.1. Matters of gravity
Relativistic physics treats gravity as a manifestation of spacetime curvature. There are three
different geometrical representations of spacetime curvature [13] as shown in Fig. (1) leading



to the three possible gravitational interpretations depicted in Fig. (2). In Fig. (1), we see the
so-called geometric trinity: geometry manifesting itself as curvature - described by the Riemann
tensor Rα

βµν , as torsion - described by the torsion tensor Tα
µν , or as non-metricity - described

by the eponymous tensor Qα
µν . Fig. (2) shows the three possible broad avenues to formulate

a theory of gravitation: GR and its extensions in the curvature interpretation, the Teleparallel
Equivalent of GR (TEGR) and its extensions in the torsion interpretation, and the Symmetric
TEGR (STEGR) and its extensions in the non-metricity interpretation of geometry.

Figure 1. The geometrical meaning of curvature, torsion and non-metricity. Adapted from
Beltran-Jimenez et al [13]. Here Rα

βµν is the Riemann curvature tensor, Γα
βµ is the affine

connection, and ∇µ represents the covariant derivative operator. The failure of two parallel-
transported vectors to form a parallelogram is given by the torsion tensor Tα

µν whereas the
failure of the connection to be metric is given by the non-metricity tensor Qα

µν .

1.2. Standard cosmology
The standard (or “concordance”) cosmological model is based on the GR description of
gravitation the action of which is given by:

SGR =
c4

16πG

∫
d4x

√
−g [R+ 2 (Lm − Λ)] ,

where c and G are the speed of light and the Newtonian gravitational constant, g is the trace of
the metric tensor gµν , R is the Ricci scalar. The corresponding Einstein’s field equations read 1:

Gµν + Λgµν = Tµν , (1)

with the first (geometric) term represented by the Einstein tensor, the right hand side of the
equation representing the energy-momentum tensor of matter fluid forms, and Λ represents
the cosmological constant. The other two descriptions of gravity, i.e., TEGR and STEGR [13]
describe similar background expansion history provided R = T = Q whereas their respective
generalisations to f(R) , f(T ) and f(Q) do not necessarily do so [14].

1 From here onwards, unless explicit use is necessary, we will assume 8πG = 1 = c.



Figure 2. Three alternative gravitational descriptions defined in terms of the Ricci scalar
R, torsion scalar T and non-metricity scalar Q, and their modified f(R), f(T ) and f(Q)
generalisations. Adapted from Beltran-Jimenez et al [13]. In the GR case, all but the curvature
tensor vanish, in TEGR only the torsion survives whereas in STEGER, the non-metricity
survives while the curvature and torsion both vanish. Due to the vanishing curvature, there is a
pure gauge field Λα

β associated with the connection in TEGR, and a tangent space coordinate
ξα associated with STEGR.

In the absence of the cosmological constant in the above field equations (1), the basic evolution
equation for the scale factor a(t) of the universe is given by the Raychaudhuri equation

3
ä

a
= −1

2
(ρ+ 3p) ,

where ρ and p are the matter energy density and isotropic pressure, respectively, and an overdot
represents differentiating with respect to (w.r.t) the cosmic time t. For ordinary matter, the
“active gravitational mass”

ρ+ 3p > 0 .

This means that ordinary matter will tend to cause the universe to decelerate, i.e., ä < 0.
But astronomical observations show that cosmic expansion is accelerating in recent epoch, i.e.,
ä > 0. A positive cosmological constant causes an accelerated expansion, so Λ could be a quick
fix provided that it dominates in the right-hand side of the following equation:

3
ä

a
= −1

2
(ρ+ 3p) + Λ .

Some serious problems associated with the cosmological constant, among them the eponymous
cosmological constant problem [15] and the coincidence problem [16] challenge the choice of Λ as
a dark energy candidate.

The Big Bang model is by far the most successful theory in predicting many cosmological
features confirmed observationally expansion of space, origin of the cosmic microwave
background, Big Bang nucleosynthesis, galactic evolution and distribution, and the formation



of large-scale structures [4]. However, there are still, broadly speaking, two serious puzzles that
remain unanswered in the standard Big Bang-based cosmology [17]:

• Early-universe problems: horizon, flatness, structure/smoothness/homogeneity, and
magnetic-monopole problems. The suggested solution here is cosmic inflation, an early-
epoch cosmic acceleration.

• Late-time (large-scale) problems: rotational curves of galaxies plus large-scale structure
formation, and late-time cosmic acceleration. This is usually where the dark stuff comes in.
The former aspect is generally thought to be solved by introducing dark matter, and the
latter by dark energy (and often with the cosmological constant as the candidate for the
dark energy).

One other puzzling, but not as widely explored, problem is the Rh(t0) = ct0 coincidence (often
referred to as the synchronicity problem) 2: the observed equality of our gravitational horizon
Rh(t0) with the distance ct0 light has travelled since the Big Bang in ΛCDMcosmology.

Some potential new frontiers to address the above shortcomings of the ΛCDMcosmology
include:

• Inhomogeneous cosmological models, such as Lemâıtre-Tolman-Bondi (LTB) [18] and
Szkeres [19] cosmologies.

• Anisotropic cosmological models, such as Bianchi cosmologies [20].

• Changing [fundamental] ‘constants’, such as evolving Λ and G cosmologies [21, 22, 23].

• Modification/generalization of GR, such as f(R), f(T ) [24], and f(Q) [25, 26] models of
gravitation, just to mention a few.

In addition, the Rh = ct model has recently joined the fray as a potential cosmological model
to address, in particular, the synchronicity problem.

2. The Rh = ct universe
First proposed by Melia, the controversial Rh = ct model has the following characteristics
[12, 27, 28]:

Rh =
c

H
= ct , a = t/t0 , H = 1/t ⇒ Ht = 1 ∀t . (2)

Here Rh and H ≡ ȧ
a are, respectively, the gravitational [horizon] radius and the Hubble

parameter. The term c/H corresponds to the Hubble radius, also known as the Hubble horizon,
and sets the scale for physically relevant causal relationships. The first part of Eq. (2) shows that
the event horizon due to purely gravitational processes equals the Hubble horizon due purely to
the cosmological expansion. This model follows from the imposition of a vanishing total AGM,

ρ+ 3p = 0 , (3)

in the gravitational theory. No cosmological constant Λ as the source of dark energy is needed
in this model.

Among other things, this model resolves the so-called synchronicity problem: why is it true
that today, the dimensionless age of the universe

H0t0 ∼ 1?

Here H0 is the Hubble constant (i.e., present-day value of the Hubble parameter). Problem:
for standard forms of matter, ρ + 3p > 0. So how can one get a vanishing AGM? This is
where modified models of gravitation come in as they naturally provide the extra “curvature”,
“torsion”, etc. . . fluid terms that contribute to the total AGM.We will therefore assume from now
on that the total fluid density and pressure terms are composed of pure matter forms denoted by
the subscript m and the terms coming form the modifications in the form of curvature, torsion
or non-metricity.

2 Here t0 denotes the age of the universe since the Big Bang.



2.1. Solutions from f(R) gravity
f(R) theories are a sub-class of fourth-order theories of gravitation [29, 3, 4, 30]:

Sf(R) =
1

2

∫
d4x

√
−g [f(R) + 2Lm] ,

with corresponding generalized Einstein field equations:

f ′Gµν = Tm
µν +

1

2
(f −Rf ′)gµν +∇ν∇µf

′ − gµν∇γ∇γf ′ .

Here and in the following, f , f ′ , etc. are shorthands for the arbitrary function f(R) of the
Ricci scalar R and its first, etc. derivatives w.r.t R. The sub/superscripts m and R stand for
the standard matter and curvature components, respectively. The background curvature- fluid
thermodynamics (introducing the volume expansion parameter Θ ≡ 3H) can be represented as:

ρR =
1

f ′

[
1

2
(Rf ′ − f)−Θf ′′Ṙ

]
,

pR =
1

f ′

[
1

2
(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 +

2

3
Θf ′′Ṙ

]
,

whereas the total energy density and pressure terms can be given by

ρ ≡ ρm
f ′ + ρR , p ≡ pm

f ′ + pR .

Imposing the vanishing AGM condition in f(R) theories with energy and pressure terms
as defined above, together with the flat-FLRW relation R = 6H2 and matter solution for the
Rh = ct case:

ρm =
ρm0

a3(1+w)
= 3H2

0Ωm0 (t0/t)
3(1+w) = αR3(1+w)/2 ,

where α ≡ 3t1+3w
0 Ωm06

−3(1+w)/2 and w is the equation of state parameter such that pm = wρm,
we get the following second-order ordinary differential equation (ode) in f:

2R2f ′′ − f + 2αR3(1+w)/2 = 0 . (4)

Here we have used the fact that Ṙ = −2
3RΘ = −

√
2
3R

3/2. Moreover, we have introduced the

notations ρm0 and Ωm0 ≡ ρm0

3H2
0
as the present-day energy density of matter and its fractional

value, respectively. Solving (4) gives

f(R) = c1R
1+

√
3

2 + c2R
1−

√
3

2 − 4α

1 + 12w + 9w2
R

3(1+w)
2 , (5)

with c1 and c2 integration constants. This same solution was obtained in [31]. This exact f(R)
solution was found [32] as a counter-example of the shear-free conjecture [33], i.e., describes a
universe with simultaneous expansion and rotation. This then implies that the Rh = ct universe
is a simultaneously expanding and rotating spacetime solution! If one compares this result with
the GR general condition [34], the Rh = ct universe with ρ + 3p = 0 ⇒ p = −ρ

3 ⇒ c2s = −1/3,
which is not an allowed solution for standard matter forms. This is an apparent contradiction
and needs further investigation.



2.2. Solutions from f(T ) gravity
In the torsion (TEGR) interpretation of gravitation, the extended-TEGR action reads:

Sf(T ) =
1

2

∫
d4x

√
−g [f(T ) + 2Lm] ,

with corresponding modified field equations

f ′Gµν = Tm
µν −

1

2
gµν(f − f ′T ) + f ′′S γ

µν ∇γT ,

where primes here denote differentiation w.r.t T and the last term denotes some “super-
potential” related to the torsion. The background “torsion-fluid” and total thermodynamic
quantities can be given by:

ρT =
1

f ′

[
1

2
(Tf ′ − f)

]
,

pT =
1

f ′

[
1

2
(f − Tf ′) + 2Hf ′′Ṫ

]
,

ρ ≡ ρm
f ′ + ρT =

ρm
f ′ +

1

2f ′
(
Tf ′ − f

)
, p ≡ pm

f ′ + pT =
pm
f ′ +

1

2f ′ (f − Tf ′) +
2Hf ′′Ṫ

f ′ .

The vanishing AGM condition leads to the o.d.e

2T 2f ′′ − Tf ′ + f + (1 + 3w)α(−T )
3(1+w)

2 = 0 ,

the solution of which is given by

f(T ) = c3T + c4
√
T − 2α

2 + 3w
(−T )

3(1+w)
2 , (6)

where c3 and c4 are integration constants. Hence any normal-matter-filled universe described
by the f(T )-gravity needs to have the form of f(T ) Lagrangian density given by Eq. (6) if it
is to satisfy Eq. (3) and thus describe the Rh = ct universe. It is worth noting that particular
solutions of this result can be shown to be a subset of the more general paradigmatic models of
the extended teleparallel gravity solutions reconstructed in [35].

2.3. Solutions from f(Q) gravity
In the STEGR interpretation of gravitation:

Sf(Q) =
1

2

∫
d4x

√
−g [f(Q) + 2Lm] .

The background non-metric and total-fluid thermodynamics are given by

ρQ = 3H2f ′ − f/2 =
1

2f ′ (Qf ′ − f) ,

pQ = f/2−
(
3H2 +

f ′′HQ̇

f ′

)
f ′ =

1

f ′

[
1

2
(f −Qf ′) + 2Hf ′′Q̇

]
,

ρ ≡ ρm
f ′ + ρQ , p ≡ pm

f ′ + pQ .

The vanishing AGM condition leads to the ode

2Q2f ′′ −Qf ′ + f + (1 + 3w)αQ
3(1+w)

2 = 0 ,



the solution of which is given by

f(Q) = c5Q+ c6
√
Q− 2α

2 + 3w
Q

3(1+w)
2 , (7)

c5 and c6 representing constants of integration, to be determined upon the imposition of initial
conditions. This result shows that the background field equations describing a universe with
normal matter and in which the underlying theory of f(Q) gravitation has the Lagrangian
density given by Eq. (7) satisfies the condition (3) and hence is a solution of the Rh = ct
universe.

3. Conclusion and outlook
The Rh = ct universe is a possible cosmological alternative to ΛCDMin explaining certain
issues such as the synchronicity problem. However, there are no sources of normal matter that
satisfy the vanishing AGM ρ + 3p = 0 condition within the standard GR framework. We have
demonstrated that this condition can be obtained from f(R), f(T ) and f(Q) gravity models
provided that the gravity Lagrangians are as given by Eqs. (5), (6) and (7). In particular, we
have shown that the f(R) solution that satisfies vanishing AGM corresponds to the shear-free
solution that allows a simultaneously expanding and rotating universe. This is a theoretical
solution to the synchronicity problem in the framework of non-standard forms of matter and
gravitation, and a lot needs to be done other cosmological aspects, such as perturbations, needs
to further scrutinise these solutions for more cosmological viability.
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235011


