Engineering Research and Technology : SA - ESRF

F Mokoena^{1,2}, A Potgieter^{1,2}, M Bhamjee¹, SH Connell¹ 1. University of Johannesburg (UJ),

P Van Vaerenbergh², G Lori³, A Kaprolat², S Jarjayes², H Djeridi⁴, R Barrett²

2. European Synchrotron Research Facility (ESRF), 2. Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), 4. Grenoble Institute of Technology (Grenoble-INP)

Note :

- 1. Frontier Level and High-Tech Opportunities,
- 2. Leveraging increased supervision and mentorship
- 3. International benchmarking and networking

THE EUROPEAN SYNCHROTRON

ESRF – part of an Eco-system for Innovation

A Potgieter : Cooling and extreme mechanical stability

Cooling and extreme mechanical stability

Peaks due to vacuum pumps

Vibration and Mechanical Stability study Zhang, M. Lesourd. (2010)

River,

These vibration amplitudes must be minimized to improve imaging performance

https://www.esrf.fr/files/live/sites/www/files/Instrumentation/friday-lecturesslides/Talk L.Zhang.pdf

Simulation Benchmarked to Experiments → Design

Simulation parodyme

Simulations – benchmarked to first approximation of PIV results.

Time-average momentum and energy equation results in additional unknowns.

Define Reynold stresses in terms of known quantities

Eddy Viscosity Models- Boussinesq hypothesis

- Simple relationship between Reynolds stresses and velocity gradient through eddy viscosity.
- Relies on dimensional analysis
- Isotropic (eddy viscosity is a scalar- same in all directions)
- Reasonable for simple turbulent shear flows
- 1-4 eq to account for the unknowns
- Realizable k-epsilon
- RNG k-epsilon (renormalization group)
- Standard k-omega
- SST k-omega (Shear Stress Transport)

Reynolds-stress Models (RSM)

- Eq specifically to each Reynold stress (7 Equations)
- No isotropic assumption
- More complicated and computational intense

Simulation Benchmarked to Experiments → Design

Advanced Simulation and benchmarking with

BM18 – typical tomo beamline at the ESRF

Fortune Mokoene (UJ+ESRF) is a MSc student working within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS) has the objective to design, procure, construct and commission a beamline for hard X-ray full-field tomography at the SESAME synchrotron in Jordan

Beam 89x4.1mm

Beam 77x3.6mm

Beam 66x3.1mm

Beam 55x2.5mm **Buisson (ESRF)**

Exposure to a Beamline Layout, design and deep training in certain elements

- Design : Sample and detector support system 1.
- Vibration simulation and analysis 2.
- 3. Sample environment (thermal)
- Sample environment (Strain) 4.
- Sample environment simulation (thermal) 5.

THE EUROPEAN SYNCHROTRON

Measurement at ID28 Chamber for benchmarking

ID28 PSD

Direction	Input RMS Displacement (nm)	RMS displacement (nm)
Х	101	116
Y	76	96
Z	127	137

Mirror 1

BS mono

Hexapod

Design of various components for BEATS

Design of the sample and detector stage.

Mechanical design and FEA of vibrations (simulation benchmarked to a similar instrument)

Design of various components for BEATS

Design of various components for BEATS

Sample Environment High temperature furnace Design and simulation

ESRF role in the AfLS

- 1. ESRF long term partner of SA : part of Science@Synchrotrons (from 2003), SRRIC, AfLS meetings
- 2. Towards Pan African Scientific Associateship of the ESRF.
- 3. Enable African Government experience in governance of RIs

ESRF role in the AfLS

Global and Africa relevant Research and Innovation – by Africans and partners

ESRF Membership – Taking stock in this case

1. Achievements

- Broaden footprint from Science to Engineering
- Include beamline instrumentation engineering and technology

2. Successes

- Simulation + benchmarking \rightarrow Design
- New cohort towards African Light Source

3. Challenges

- COVID conditions
- Develop VISA process for MSc Engineering (EU labor law)
- Funding

4. New opportunities

- Transfer Advanced Design skills to SA
- Capacity for SA to develop Instrumentation for Science
- Breakthrough Science, technology Driver

Significance of the continued access to the ESRF synchrotron.

- 1. ESRF is an International large-scale infrastructure world leader CERN of synchrotrons
- 2. Capacity development Examples of Engineering the focus of this presentations
 - Frontier level and High-Tech Opportunities,
 - Leveraging increased supervision and mentorship
 - International benchmarking and networking
- 3. Diversity exhibited here.
- 4. Succession development project /programme leadership.
 - Students, Emerging Researchers