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Results and Discussions

Titanium-based alloys in particular Ti50Pd50 are being developed for high temperature applications. The Ti50Pd50 alloy has a potential for high temperature shape memory

applications due to its martensitic transformation capability from B2 to B19 at 823 K [1]. This alloy exists as a high temperature phase (austenite phase) which has a simple cubic

B2 while at low temperature is known as the martensite phase with an orthorhombic B19 structure [2]. Previous studies indicated that B2 TiPd is unstable displaying a negative C’

at 0 K [3]. Consequently, the binary Ti50Pd50 alloy has no strength for use in actuators and aeronautic industry and ternary alloys need to be established to improve their properties

Then, alloying with Cu is an attempt to improve their strength at 0 K as it has extraordinary properties such as corrosion resistance and high thermal conductivity. In this study,

ternary alloying of Ti50Pd50 with Cu have been performed using DFT approach to investigate the thermodynamic an d mechanical stability to deduce their potential in HT

application.

Ab initio DFT approach was successfully used to study SMA properties

of B2 Ti50Pd50-xCux for potential HT applications. The results suggest that

Ti50Pd50-xCux are thermodynamically stable fat lower composition (6.25

at.% cu) with the lowest value of the heats of formation. The effect of

ternary addition revealed that Ti50Pd50-xCux alloys are mechanically

stable above 20 at. % Cu according to the criteria of mechanical stability.

Cu addition was found to increase the martensitic transformation

temperature of the TiPd since it gives the negative 𝐶′ below 20 at. %. It

was revealed that increasing Cu above 6.25 at. % could effectively

improve the ductility of the compound. Our phonon dispersion

calculations predicted vibrationally instability below 18.75 at. % Cu
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Figure 2: (a) elastic constants (GPa) and (b) anisotropy as a function of atomic percent Cu for Ti50Pd50-xCux where 0 ≤ x ≤ 25. 

Figure 3: Simulated (a) Bulk (B), Shear (G), Young ‘s  modulus and (b) The B/G ratio, Poisson ‘s ratio as a function 

of atomic percent Cu for Ti50Pd50-xCux (0 ≤ x ≤ 25) SMAs.

Structural and thermodynamic properties Hardness and ductility

Elastic properties

Figure 1 (a): It is clear that the lattice parameter 

decreases as Cu content is increased, this is 

attributed to the small radius of Cu compared to Pd. 

The mechanical stability condition for cubic system [9]:

For an isotropic crystal, the factor (A) must be 1, while any value small or large than unity is a

measure of the degree of elastic anisotropy. Anisotropy ratio is determined from

Figure 2 (a): It is observed that B2 Ti50Pd50-xCux is mechanical stable above 25 at. % Cu.

Figure 2 (b): It is clearly seen that Ti50Pd50-xCux show anisotropic behaviour for 0 ≤ x ≤ 25.

Figure 4: The phonon dispersion curves of Ti50Pd50-xCux show no negative vibrational

frequencies above 20 at. % Cu suggesting that the material is vibrational stable. The other

phonon dispersion curves are vibrational unstable displaying soft modes along gamma point

which correspond with their negative Shear moduli (C′) for (0 ≤ x ≤ 18.75) .

For a structure to be stable, the heat of formation

must have the lowest negative value (ΔHf < 0).

Figure 1 (b): It is clearly seen that the heat of

formation decreases as the concentration of Cu is

increased. At 6.25 at. % Cu, the ∆Hf is the lowest

which implies thermodynamically stable compared to

other Cu compositions such as 18.75 and 25..

Figure 4: The phonon dispersion curves of the Ti50Pd50-xCux (0 ≤ x ≤ 25) ternary structures.

Figure 1: (a) Lattice parameter, a (Å ) and (b) heats of formation of the B2 Ti50Pd50-XCuX (0≤𝑥≤25) ternary SMAs.

The heat of formation is determined by expression:
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Figure 3 (a): The bulk modulus decreases minimally with an increase in Cu concentration.

Ti50Pd43.75Cu6.25 appears to be the hardest due to the highest bulk modulus as compared to other

compositions. The G and E is greater than above 18 at. % Cu which indicate that the structure is

less compressible and stiffer.

Ductility condition:

The Pugh (B/G) > 1.75 [10] and Poisson (𝜎)> 0.26 [11] is regarded as ductile otherwise

brittle.

In Figure 3 (b), the B/G ratio >1.75 except for 6.25 at. % Cu (condition of ductility). In the case of

Poisson ‘s ratio, the ductility is observed for (0 ≤ x ≤ 25) as the ratio is greater than 0.26.
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