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Entangled photon pairs are employed in quantum ghost imaging to facilitate an alternative
image acquisition method. These photon pairs can be either degenerate or non-
degenerate in nature [1]. Non-degenerate, or dual-wavelength, ghost imaging offers the
ability to image with wavelength bandwidths where spatially resolving detectors are
impractical. Due to the scanning nature (a series of binary intensity patterns or masks) and
the inherent low light levels of quantum ghost imaging, imaging speeds are unsatisfactory
[2]. Our two-step intelligent algorithms leverage a deep convolutional autoencoder
network to enhance the reconstructed image after each measurement and a recognition
algorithm to predict the confidence level of object recognition after each measurement,
Reducing image reconstruction time by reducing the number of measurements needed.
We demonstrate a 5-fold reduction in image acquisition time, leading to time-efficient
ghost imaging. We believe that this novel two-step intelligent algorithm approach will
provide valuable insight into time-efficient ghost imaging.

Introduction

Intelligent algorithms, parameters and criteria

Results

Due to the scanning nature of ghost imaging and the inherent low light levels of quantum experiments, imaging speeds are rather unsatisfactory. To overcome this limitation, we leverage
a two-step intelligent algorithm approach to establish an optimal early-stopping point for the experiment while preserving and maintaining the information contained in the image. Step
one enhances the reconstructed image after each measurement and employs a deep-convolutional autoencoder, while step two recognises the image after each measurement by a neural
classifier. We achieved a recognition confidence of 75% at 22% of the image reconstruction time, hence reducing the time 5-fold while preserving the image information. We tested our
method on a dual-wavelength imaging system however, our procedure can be extended to many such systems that are of quantum nature.

Summary
• We designed and implemented a two-step intelligent algorithm approach to establish an

optimal early stopping point for ghost imaging experiments.
• We imposed a strict early stopping criteria of 75% confidence.
• Our novel two-step approach allows for reconstruction time to be reduced to 22%.
• Our technique is robust enough to handle different objects, mask types, mask

resolutions and outperforms a one-step neural recognition algorithm.

We tested different objects (not shown), mask types and resolutions. Walsh 2D masks
converge the quickest [3] and were therefore the focus of this study. In Fig. 5(a) the
stopping point was achieved at ~45% while in the two-step approach (Fig. 5(b)) our
stopping point is at an outstanding 22% of image acquisition time, successfully reducing
image reconstruction time to less than a quarter of what was initially required. The two-
step technique outperforms the recognition algorithm by more than 20%. Figure 6 shows
that our technique is robust to different mask types and resolutions, successfully reducing
acquisition time in all cases [4].
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Figure 1: Dual-wavelength entangled photons are spatially separated along two arms. One photon interacts with the object and is collected by a bucket detector. The other photon is collected by a
spatially resolving detector comprising a patterned mask and a bucket detector. The image is reconstructed by a linear combination of the patterned masks weighted by the coincidences. After each
image reconstruction the image is sent to the autoencoder for enhancement and denoising and then to the classifier for recognition and confidence prediction.

Two-step deep learning approach

Step one – random noise was added to the training dataset until the entire dataset was
completely distorted, a deep convolutional autoencoder was trained to extract noise and
enhance the distorted dataset. Step two - a neutral classifier was trained to recognise the
enhanced images from the dataset and to predict their confidence level (process shown in
Fig. 2).
Procedure – the intelligent algorithms were trained pre-measurement to allow for
instantaneous image enhancement and recognition post-measurement. The dual-
wavelength experiment was performed and the image was saved after each
reconstruction, i.e. after each mask (mask types and resolution shown in Fig. 3). Each
image reconstruction was passed to our autoencoder for enhancement and denoising,
followed by our classifier for recognition and confidence prediction. The output is a
confidence curve (shown in Fig. 4) which we used to determine our early stopping point. A
strict criteria of 75% confidence was imposed before stopping the experiment, 50%
confidence is generally accepted in such a classification problem.

Figure 5: (a )Raw reconstructed images and (b) enhanced autoencoder images for object nine at
20 – 100% image reconstruction time in increments of 20%, respectively. Followed by the
corresponding compact confidences curves for all digits for (a) a recognition algorithm alone
and (b) our two-step approach. The vertical lines represent the point at which the stopping
criteria was achieved. The object was reconstructed by 48 x 48 pixel Walsh 2D masks (2304
masks are initially needed to completely reconstruct the image).
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Figure 4: Confidence curve indicating optimal early stopping
point. A compact confidence curve is shown at the bottom.
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Figure 2: Process followed
to train our two-step
intelligent algorithms to find
the optimal early stopping
point.

Figure 3: Physical parameters in the experiment were varied,
such as mask type (a) Walsh 2D and (b) Random and mask
resolution (a - b) 48 x 48 pixels and (c) 96 x 96 pixels.
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Figure 6: Raw reconstructed images, enhanced autoencoder images and compact confidence
curves for (a) 48 x 48 pixel image from 10000 random masks and (b) 96 x 96 pixel image from
9216 Walsh 2D masks.
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