

Comparison of spectral focusing approaches in single-beam CARS

Ruan Viljoen¹, Dirk Spangenberg², Pieter Neethling¹, Alexander Heidt², Thomas Feurer², Erich Rohwer¹

1- Laser Research Institute, Stellenbosch University

2- Institute of Applied Physics, Bern University

Single-beam coherent anti-Stokes Raman scattering (SB-CARS) spectroscopy is a special implementation of CARS which utilises a single broadband light source, as opposed to the up to three lasers found in a traditional implementation. This CARS configuration, in combination with spectral focusing, has been shown to be able to target and isolate chosen Raman transitions from broad spectra in applications such as microscopy and stand-off detection. The experimental setup combines our unique white light source with our novel pulse characterization technique to develop new improved methods for SB-CARS.

In this poster we highlight two spectral focusing pulse shaping strategies implemented in our custom setup. Spectral focusing allows for the targeting of chosen Raman transitions within the SB-CARS spectrum. These strategies use the introduction of known phase functions in the form of either quadratic phase functions or carefully tailored binary sequences. We show that the signal-tobackground of spectra can be larger by a factor of three when using quadratic phase functions as compared to spectra obtained using binary sequences.

Single-beam coherent anti-Stokes Raman scattering

SB-CARS is a special geometric implementation of CARS, a third order non-linear optical process. Generally, to induce CARS in a molecule, three optical fields are needed. A probe (ω_n) and Stokes (ω_S) field together excite a molecule to an excited vibrational state. A third field, the probe (ω_{pr}) , induces the emission of a fourth field, an anti-Stokes (ω_{as}) field. This process is shown in fig. 1.

Spectral focusing approaches

Spectral focusing is a technique utilised in CARS to 'focus' the entire excitation spectral bandwidth to excite only a single chosen transition.

Phase matching conditions, as illustrated in fig. 2, must be fulfilled. In the case of SB-CARS where the pump, Stokes, and probe fields are contained within a single broadband laser beam, the phase matching is fulfilled using a high numerical aperture microscope objective.

Further requirements for successful SB-CARS, is a single light source with sufficient bandwidth to excite a broad range of molecular excitations simultaneously. A simulation of such a broadband light source, shown in fig.3, with a bandwidth in the order of 100 nm is sufficient to cover a large excitation range. The calculated population amplitude of such an excitation spectrum, shows that a broad probing range is available up to around 3000 cm⁻¹, as seen in fig. 4.

Fig. 3. Simulated broadband excitation Fig. 4. Calculated population amplitude

Fig. Diagram showing 1. pump, stokes and probe fields producing anti-Stokes field.

 v_3 .

 v_2 -

 v_1

 v_0

In SB-CARS, because we have control of the spectral phase, this can be actioned by applying quadratic phase functions (QPF) to the pump part of the spectrum. A QPF is equivalent to a temporal chirp. Thus, dividing the pump in two and adding identical QPF to those sections, produce two temporally chirped pulses. The interference of these pulses produce pulse trains with a periodicity that match the chosen focused transition. In the spectral picture, however, this process bins the pump.

The addition of the identical QPFs creates spectral pairs that are always in phase with each other and out-of-phase with other spectral components. In order to tailor the QPFs for a particular transition, the turning points of the QPFs are positioned to be a 'spectral distance' away from each other that match the frequency of the chosen target transition (as shown in fig. 7). The extent of focusing can further we tailored by changing the steepness of these functions, where an increase of the steepness corresponds to an increase of the focusing 'strength'.

Another approach to SB-CARS spectral focusing uses 20.8 low autocorrelating binary sequences (BPFs). Two 5 identical BPFs similarly bins the pump and generates frequency pairs that are always in-phase with each 2 0.4 other and out-of-phase with other spectral components. This shaping approach is shown in fig. 8. In this scenario the focusing strength depends on ē the bin number of the chosen sequence and the extent of low correlation between two BPFs. These properties can, however, not be tailor made and are unfortunately constrained by the physical SB-CARS setup and the existence of these sequences.

of simulated excitation spectrum. spectrum.

Experimental setup

Fig. 5. Diagram showing pump, stokes and probe fields producing Anti-Stokes field.

Using the capabilities of the pulse shaper, two collinear pulse characterisation and compression techniques were used to compress the supercontinuum pulses. MIIPS, widely technique, used а performed poorly compared to our inhouse developed method, i²PIE [1]. This In our implementation of SB-CARS (as described by fig. 5), a fs-oscillator is used to pump a polarisation maintaining all-normal dispersion photonic crystal fiber (PM-ANDi-PCF) to produce a supercontinuum with sufficient bandwidth (~100 nm) for SB-CARS spectral measurements. Laser pulses are produced at 80MHz and arrive at the sample plane with low pulse energies (0.69 nJ), allowing for fast acquisition of spectra with negligible energy deposited to samples.

Due to dispersion in the PCF, pulses have to be characterised and temporal dispersion is compensated for by using a spatial light modulator (SLM) in 4f-shaper geometry, as a pulse shaper.

Fig. 8. Pulse shaping scheme for binary phase spectral focusing.

Spectral focusing measurements

Target frequency (cm^{-1})	S:B 10 000 fs^2	S:B 15 000 fs^2
461	4	13
826	41	68
1206	32	30

Spectral focusing with QPFs was used to target resonant transitions of para-xylene signal-to-background the and was quantified for different resonances and summarised in above table. In fig. 9 we show the measured spectral focused paraxylene spectra. It also shows that in increase in QPF steepness results in improved signal-to-background.

Fig. 9. SB-CARS spectra of para-xylene with supercontinuum shaped to focus chosen transitions. Steepness values of QPFs were adjusted from 10e3 fs^2 (red) to 15e3 fs^2 (blue).

Target frequency (cm^{-1}) | Bin number | S:B

461

826

was illustrated when measuring the SB-CARS spectrum of p-xylene.

A measurement was performed using pulses compressed with MIIPS and another with i²PIE and is shown in fig. 6. A signal-to-background increase of a factor 4 [2], was seen when comparing the spectrum obtained using i²PIE compressed pulses to that from MIIPS.

Fig. 6. Para-xylene SB-CARS spectrum obtained using pulses compressed with MIIPS (top) and i²PIE (bottom).

[1] D.M. Spangenberg, E. Rohwer, M. Brügmann, and T. Feurer, "Extending time-domain ptychography to generalized phase-only transfer functions," Opt. Lett. 45, 300 (2020).

[2] R. Viljoen *et al.*, "Implementation of temporal ptychography algorithm, _{PE}, for improved single-beam coherent anti-Stokes Raman scattering measurements," J. Opt. Soc. Am. B, vol. 37, no. 11, p. A259, Nov. 2020

Fig. 10. SB-CARS spectra of para-xylene with supercontinuum shaped to focus chosen

transitions using BPFs.

		1206			122	24			
p	ectral	focus	sing	with	BPFs	was	also	used	to
а	rget cł	nosen	resc	onant	transi	tions	of pa	ar-xyle	ene
n	nd is sh	nown	in fig	g. 10.	Comp	aring	S:B v	values	(in
b	ove t	able)	obt	ained	with	tho	se fr	om C)PF
n	easure	ement	s, sh	now t	hat an	imp	roven	nent d	can
)e	e gaine	ed by	up	do 3	times	(con	npariı	ng tha	ose
'a	lues o	btaine	ed fo	r 800	cm⁻¹).				

41

79

18

23

In practice it is clear that QPFs provide more tailoring flexibility, with comparable focusing strength to that of BPFs and should be the approach of choice.

Contact: rviljoen@sun.ac.za

