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ABSTRACT

ZnO (wurtzite) samples were implanted with Ar+ ions to generate intrinsic defects within

10718 ions/cm”2. Doppler broadening of the annihilation centroids were obtained to determine S-

juantity of defects. X-ray diffraction (XRD) method was employed to determine any structural or ph:

2 positron annihilation spectroscopy results were correlated with Optical absorption spectra of the c

t fluencies. Theoretical calculations for potentials and wave-functions for both positrons and elect

hilation momentum density was also calculated for positron annihilations with core electrons up tc
in valence states and vacancies.

AND DELAY FOR THE ARRIVAL OF SAMPLES, ONLY THEORETICAL APPROACH IS REPORTED IN THI

ation
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Figure 5. Makhov profiles in ZnO for positron beam at

different beam energies 5, 10, 15 and 25 keV assist in Figure 6. It is clear that the potential
identifying the extent of radiation damage caused by ion ble for positron trapping and annihilz
-implantation

CONCLUSION REFERE

not yet completed, the theoretical analysis based on LDA and GGA shows [1].Boronski E and Nie
ient potential to localize positrons for annihilations with electrons, figure 3  Phys. Rev. B34 3820

for a positron to be trapped in a Zn vacancy and the potential in figure 6 [2]. Nieminen RN anc

1979, Positrons in So
plantation fluence is determined by knowing the depth profiles as shown in Verlag, Berlin, pg 14

e (negative) of the Zn vacancy which makes it easy to trap the positron. The

5 as shown in figure 6 is used to determine the concentration of defects. S-



