

Magnetic and Physical properties of the layered compound

Ce₃Os₄Al₁₂

Highly Correlated Matter Research group, Physics Department, University of Johannesburg, Auckland Park, South Africa

Introduction

 $R_3T_4X_{12}$ type of compounds are of particular interest among intermetallics because the crystal structure contains layers as well as triangular and distorted Kagomé lattice features [1-3]. The arrangement of the atoms carrying magnetic moments at the vertices of the structure and the competition between and antiferromagnetic ferro interactions can lead to the appearance of magnetic Gd₃Ru₄Al₁₂, frustration phenomena. For instance, In with the formation of \mathbf{O} geometrical frustration together ferromagnetic trimers due to the long-range RKKY interaction is observed at low temperatures [4]. Several studies have been done on Ru-based compounds in this series of aluminides. However, no physical and magnetic properties have been reported yet on Os-based compounds (except on $Gd_3Os_4Al_{12}$) synthesized for the first time by Niermann [5]. This work is the first report on physical properties of $Ce_3Os_4Al_{12}$ with the focus on the possible effects of the geometric frustration

٤

Experimental

The metals used as starting materials were cerium (solid bar, 99.99 mass% purity), Osmium (powder, 99.9+ mass% purity), and Aluminium (granules, 99.999 mass% purity). A polycrystalline sample of 1.5 g, was prepared by arcmelting under the argon atmosphere in an Edmund Bühler arc-melting furnace. After melting the sample was annealed in a resistance furnace at 900 °C for two weeks and finally water quenched. Powder x-ray diffraction was performed on a powdered specimen using the Rigaku diffractometer with Cu-K radiation. Data of physic properties were recorded using a Dynacool physical ar magnetic properties measurement system from Quantu Design (San Diego)

Fig. 1. (a): Lavered representation of the crystal structu Ce₃Os₄Al₁₂ with Ce (Orange spheres), Os (blue spheres) ai (green). (b): The Ce₃Al₄ layer showing the distorted Kag nets.

References

- [1] W. Ge et al., Solid State Commun 195 (2014) 1-5
- [2] M. S. Henriques et al., Phys. Rev. B 97 (2018) 014431
- [3] D. I. Gorbunov et al., Phys. Rev. B 90 (2014) 094405
- [4] S. Nakamura et al., Phys. Rev. B 98 (2018) 054410

[5] J. Niermann et al., Z. Anorg. Allg. Chem. 628 (2002) 2549-2556 confirm the nature of the transition.

Fig. 3. Isothermal magnetization at temperatures between 2 K and 20 K. Broad curvatures are observed (Ce) below 6 K with tendency to saturation at 9 T. The saturation magnetization is only about 0.06 μ_{B}/Ce which is considerably reduced compared to the free ion N saturation value 2.16 µ_p/Ce. The guasi-linear behavior down to 6 K indicates a paramagnetic state.

Fig. 2. Main panel: magnetic susceptibility of Ce₃Os₄Al₁₂ measured in a constant dc-magnetic field of 0.1 T. The black line represents the least-squares fit of the modified Curie-Weiss relation ($\chi(T) = \chi_0$ + $N_A \mu^2_{eff} / 3k_B (T - \theta_p)$. The obtained positive paramagnetic Weiss temperature (θp = 5.33 K) indicates the dominant presence of ferromagnetic interactions in the high temperature region. The obtained effective magnetic moment (μ_{eff} = 0.94 $\mu_{B}/Ce)$ is around one third the full free-ion moment value 2.54 $\mu_{\rm p}/{\rm Ce.}$ Inset (a): highlight of the low-temperature region. Inset (b): represents the first derivative of $\chi(T)$. The sharp peak in the plot of $d\chi/dT$ indicates the presence of a magnetic phase transition.

Fig. 4. Main panel: Specific heat of Ce₃Os₄Al₁₂ and La₃Os₄Al₁₂ against temperature. Inset (a) represents the low-temperature region. The blue symbols represent the magnetic contribution to the specific heat obtained by subtracting the specific heat of $La_3Os_4Al_{12}$ from that of $Ce_3Os_4Al_{12}$. The kink observed around the transition temperature $T_c=3$ K is a sign of a short-range order-like transition. Inset (b) shows the 4f contribution to the entropy per Ce as a function of temperature. The magnetic contribution released at $T_{\rm c}$ is about 0.6 J/mole_{Ce}.K^2 which is only a fraction of Rln2. A linear behavior observed from about 100 K to 300 K confirms that there is no tendency to saturation. Inset (c): specific heat $C_n(T)/T$ vs T^2 . The red line represents a linear fit which gives an estimation of the Sommerfeld coefficient $\gamma = 0.097(1)$ J/ mole_{Ce}.K². This value is an enhancement of about 20 times over that of a normal metal

Conclusions

Ce₃Os₄Al₁₂ is a new example of layered Kagome structure with possible effects of the geometric frustration. The $\chi(T)$ and $C_n(T)$ data confirms the presence of a short-range orderlike transition. A field study will be carried out further to

Acknowledgements

RFD thanks OWSD and SIDA for fellowships towards her PhD studies. AMS thanks the URC/FRC of UJ for financial support B. Sahu thanks Global Excellence and Stature (UJ-GES) fellowship. University of Johannesburg, and the SA-NRF (93549) for financial support.

Results

Formation and structure. The powder x-ray diffraction spectrum of this sample was successfully refined on the basis of the hexagonal $Gd_3Ru_4Al_{12}$ structure type with P6₃/mmc space group. The obtained lattice parameters are a = 0.889 (1) nm and c = 0.953 (1) nm. These values are in good agreement with an earlier report [5]. The whole system is a layered structure. The R atoms are arranged as a distorted Kagomé net in the Ce₃Al₄ layer, and the Al atoms occupy two different sites in the Os₄Al₈ puckered layer (see Fig. 1).

'n