Characterization of P3HT-FWCNT thin film for photovoltaic solar cell application

<u>Seithati Qotso^{1*}, Pontsho Mbule¹ and Bakang Mothudi¹</u>

¹Department of Physics, CSET, University of South Africa, Johannesburg, 1710, South Africa

1.Abstract

The global share of photovoltaic (PV) technologies in the electricity and energy production still remain marginal today and is likely to remain this way for a long period of time especially in the poor developing countries [1]. The evidence of the limited global impact of PV is marked by the increasing market share of fossil fuels in the generation of electricity **Carbon nanotubes (CNT) have emerged as one** [2]. the leading additives for improving the ot thermoelectric properties of organic materials due to their unique structure and excellent electronic transport properties [3]. In this study poly(3 hexylthiophene) and few-walled carbon nanotubes (P3HT-FWCNT) at different ratios were investigated for the purpose of improving P3HT absorption and conductivity for applications in organic solar cells.

2.Experimental

The films were characterized using the X-ray diffraction (XRD), ultra violet to visible (UV-Vis) spectrophotometer, photoluminescence **(PL)** intensity, field emission scanning electron (FESEM), energy-dispersive microscopy (EDS), Fourier Transform Infrared spectroscopy **Spectroscopy (FTIR) and current-voltage (I-V)** characterization.

Fig. 1: Schematic diagram of P3HT-FWCNT preparation process

3.Results

Optical properties

SAMPLE NAME	BANDGAP (eV)
FWCNT	2.7
P3HT	1.8
P3HT-FWCNT (1:1)	1.8
P3HT-FWCNT (1:2)	1.9
P3HT-FWCNT (1:3)	1.9
P3HT-FWCNT (1:4)	1.9

Table 1: Bandgap of prepared films

Fig. 2: XRD patterns of FWCNT and P3HT-**FWCNT** at different ratios.

Photoluminescence (PL) properties

Fig.4: PL spectra od P3HT and P3HT-FWCNT at different ratios

Fig.3: (a) P3HT, FWCNT and P3HT-FWCNT at different ratios (b) Tau'C plot of P3HT

□ FESEM and EDS Analysis

Fig.5: FESEM images (a) P3HT (b) FWCNT (c) P3HT-FWCNT (1:1)

