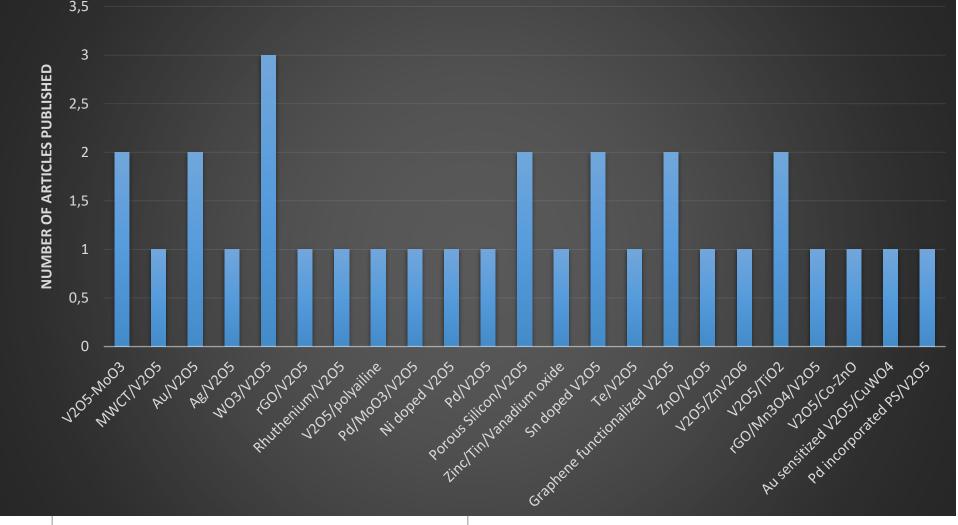


IMPROVEMENT OF GAS SENSING SELECTIVITY OF VANADIUM PENTOXIDE NANO-STRUCTURES TOWARDS SULPHUR DIOXIDE BY GOLD DOPING

MM Mokwena¹, OO Nubi² and A Akande³


^{1,2}Department of Physics, University of Limpopo, Private Bag x1106, Sovenga, 0727, South Africa ³CSIR NextGen Enterprises and Institutions, Advanced Internet of Things, PO Box 395, Pretoria, 0001, South Africa Email addresses:mick.molukie@gmail.com

POSTER: THE SOUTH AFRICAN INSTITUTE OF PHYSICS CONFERENCE - 22-30 JULY 2021

ABSTRACT

Vanadium pentoxide (V_2O_5) is a semiconductor metal oxide material with properties that makes it suitable for gas sensing applications. These properties are strong catalytic activity, high conductivity and structural ability. Despite this, literature showed that low selectivity and high operating temperatures still limit its functionality in practice. Sulphur dioxide (SO_2) is a highly toxic greenhouse gas with an unpleasant odor that is emitted primarily by the combustion of fossil fuels and volcanic eruptions. Even at concentrations as low as 5ppm, SO₂ can cause serious health issues to human lives. Fabrication of highly selective and low operating temperature SO_2 gas sensors are of utmost importance. This review presents current drawbacks and recent advances of V2O5 nanoparticles for gas sensing application (paying close attention to Au/V_2O_5 towards SO_2 in anticipation of the study that follows). Possible gas sensing mechanisms of V_2O_5 and Au/ V_2O_5 in the presence of SO₂ gas are also presented.

RESULTS AND DISCUSSIONS

Figure 3: Shows number of papers where V_2O_5 is

doped/functionalised/ decorated with different material to improve

Table 1: The profile of V_2O_5 based sensor materials and their sensing

temperat

Analyte

gas

Concentr

ation(pp

m)

Sensor

response

Respons

e/recove

ry

times(s)

BACKGROUND

Introduction

- Air pollution and its impact in society [1]
- Gas and chemical sensors play a crucial role in monitoring harmful gases (toxic, explosive and poisonous) in the atmosphere [2]
- Semiconductor metal oxides (SMOs) viewed as potential gas sensing materials[3]
- Vanadium pentoxide is an inorganic compound with the chemical formula V_2O_5 [4].

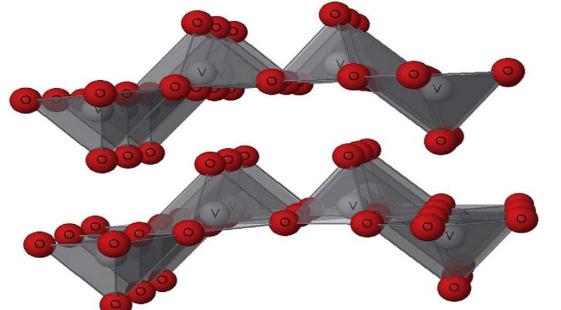


Figure 1: Perspective view of two layers of V_2O_5 . V atoms are represented as grey balls, O atoms as red balls. Weak van der Waals bonds are omitted for clarity[6].

V_2O_5 is exceptional in gas sensing

- Excellent electrical, optical and magnetic properties
- Surface adsorption characteristics and $CO + O_{ads}^- \rightarrow CO_2 + e^$ catalytic activities [6]
- The most stable compound in the V-O and Au/ V_2O_5 is exposed to SO₂ gas: scheme [7]

Figure 2:

https://www.reade.com/products/van adium-oxide-pentoxide-powder-vo-

vo2-v2o3-and-v2o5/2020.

- Possible gas sensing mechanism of V_2O_5 (n-type material) upon exposure to reducing gases: e.g.
- - Type of reaction anticipated when V_2O_5

ure(°C) V_2O_5 and V_2O_5 Emulsion 200 ethanol

Sensing material | Synthesi | Operatin |

s method

its gas sensing performance

V ₂ O ₅ and V ₂ O ₅ /Au nanotubes	Emulsion - electrospi nning	200	ethanol	100	-	5s/5s [8]
Au/VOx films	Dc magnetro n sputterin g	25	CH ₄	1500	-	-/- [9]
V_2O_5 nanorods	Chemical spray pyrolysis	200	NO2	100	20.3%	17s/185s [10]
WO ₃ -V ₂ O ₅	Chemical spray pyrolysis	350	SO ₂	5-50	77.84%	-/- [11]

Common synthesis methods of V₂O₅ for gas sensing application

- Pulsed laser deposition (PLD)
- Magnetron sputtering
- Chemical spray pyrolysis
- Hydrothermal
- Sol-gel

 $SO_2 + O_{ads} \rightarrow SO_3 + e^-$ • A metal-to-insulator (MIT) (375°C)

REFERENCES

[1] H. Ritchie and M. Roser, air pollution, (2017)

[2] S. Coyle, V. F. Curto, F. Benito-Lopez, L. Florea, D. Diamond, Wearable Bio and Chemical Sensors, (2014) Wearable Sensors, 65-83

[3] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira Jr, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides, (2018) Microchimica Acta, 185-213

[4] G. Bauer, V. Güther, H. Hess, A. Otto, O. Roidl, H. Roller, S. Sattelberger, Vanadium and vanadium compounds, (2005) Ullmann's Encyclopedia of Industrial Chemistry

[5] Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature, 2018, The Royal Society of Chemistry

[6] S. Beke, A review of the growth of V_2O_5 films from 1885 to 2010, Thin solid films (2011) 159, 1761-1771.

[7] V. Eyert, K.-H. Hock, Electronic structure of V_2O_5 : Role of octahedral deformations, (1998) PHYSICAL REVIEW B, 57 (20), 12727-12737

[8] W. Zeng, W. Chen, Z. Li, H. Zhang, T. Li, Rapid and sensitive ethanol sensor based on hollow Au/V2O5 nanotubes via emulsionelectrospinning route, (2015) Materials Research Bulletin 65, 157-162

[9] J. Liang, J. Liu, N. Li, W. Li, Magnetron sputtered Au-decorated vanadium oxides composite thin films for methane-sensing properties at room temperature, (2016) Journal of Alloys and Compounds 671, 283-290

[10] A. A. Mane, P. S. Maldar, S. H. Dabhole, S. A. Nikam, A. V. Moholkar, Effect of substrate temperature on physicochemical and gas sensing properties of sprayed orthorhombic V_2O_5 thin films, (2019) Measurement 131, 223-234

[11] J. M. Patil, S. B. Patil, R. H. Bari and A. N. Sonar, "SO₂ sensing performance of chemically sprayed WO₃- V₂O₅ nanocomposites thin films," International Journal of Chemical Concepts, vol. 2, no. 1, pp. 12-23, 2016.

CONCLUSIONS

The effect of doping/decoration/functionalizing and composite structures of pristine V_2O_5 nanostructures has improved the gas sensing performance greatly. Not much work has been done on improving gas sensitivity of pristine V_2O_5 towards SO_2 gas. 2dimensional V_2O_5 nanostructures have been synthesized using various methods for various applications but are yet to be considered for gas sensing application.

Acknowledgements

