Pitch-angle Scattering vs. Magnetic Confinement in Flare Loops
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Abstract ]_01 ' ' ' ' ' ' ' 3.5 ' ' '
Accelerated particles in flaring loops are confined by both pitch-angle 5 Peak 1 ISOLropIC (7es =3.06;Tpeak =0.88) [ Teross] 3.0} — Mirroring (If=0.64; fipea=1.00)
scattering and the converging of magnetic fields to the loop endpoints, i.e. 3 10° Bi—directional (Tesc=140;7peak =0.88) [Teross] > 5l Isotropic (1 =0.64; ipes=0.78)
magnetic mirroring. This confinement, together with the initial pitch-angle % | — Pancake (tec=6.66:7pea =1.62) [ Teros] 5 ol Bi—directicinal (F1=0.75; Hpear =0.98)
distribution of the injected particles, governs the average escape time of S 107 | Tail T|| — Pancake (a1 =0.63; fpeak=0-83)
particles from the loop. The escape time can give an estimate of the particle _El_g) Peak 2
spectrum as it indicates how much time is available for acceleration and € 1072
energy losses to occur. Pitch-angle scattering is caused by both Coulomb g
collisions and magnetic turbulence, but the two processes have different 1073 I : : : : : | |
pitch-angle and energy dependencies, and could therefore yield different escape 0 2 4 6 8 10 12 14
times. The hard X-rays produced by escaping particles are sensitive to the 207 f [Teros 990 W 90
temporal profile and pitch-angle distribution of escaping particles and not the T Ng5e 1357 e N 1357
average escape time. We investigate the effect of a spatially varying magnetic e o S e
field and anisotropic scattering on the escape time. We find that these _ ~
considerations only yield a factor two difference in the escape time compared ~ X Moo S
to isotropic scattering in a uniform magnetic field with a loss cone specified at o & "
the endpoints. The temporal profile and pitch-angle distribution of escaping A e
particles are also investigated. We find that the time when the bulk of the O N T X N e
particles escape can be quite different from the average escape time and that T TN
periodic 'waves' of escaping particles are found under weak scattering 270° 270° 270°
conditions. The pitch-angle distributions of escaping particles are found to be Fig. 3: Temporal profile (top left) and time integrated pitch-angle distribution (PAD) (top right) of escaping particles for n = 2, n = 2, and isotropic scattering with Dy = 0.2
generally neither isotropic nor beamed, and critically depend on either the (intermediate scattering: Ty. ~ Teross)- 1 he distributions’ average and the values where the distributions peak are indicated in the legends. Only || is considered for the time integrated
scattering regime or the injected distribution. PAD because the PAD at the two endpoints are symmetric about ;1 = 0. The PAD at three different times (indicated in the time profile) are shown in the bottom row as polar plots (0°
being in the direction of the magnetic field and 180° being in the opposite direction; the right/left hemisphere corresponds to particles escaping at s = s;,/S = —sp).
| - Fig. 2 shows the effect of a spatially varying magnetic field and anisotropic
d o gsfrc;rr']?escrt";):t 2.1 Governing Equations scattering on the average escape time.
(RCS) We solved, with stochastic differential equations [see e.g. Strauss & - Fig. 3 shows the escaping particles’ temporal profile and both the time
Plasma Upflow T Effenberger, 201 7]’ the focused transport equation of Roe/of[1969] for the integrated and temporal evolution of the pitch—angle distribution (PAD)
| distribution function f(s; u; t), - Time integrated PADs: 1) Strong scattering and intermediate scattering with
/ X-point 5 5 5 -(1 B 2) 1 5 9 n = 1: &~ 3u? or ~ 2|y for isotropic or anisotropic scattering, respectively;
Plasma Inflow —— -—-3» W <--- + —[uv f]+ H) Vel = 9 [D/W_] 7 (1)| 2) Intermediate to weak scattering with n > 1. ~ |u|/n(1 — e/ p2 4+ p2/n,
g s Op ] 2L(s) i Op Op with pe = v/1 —n~1; 3) Too weak scattering: ~ 6(|u| — 1) or
Plasma Downflow where s is the coordinate along the magnetic field line, v is the particle’s ~ 3(2fpeak ] — ,uz)/4,uf)eak for bi-directional beam or pancake injection,
Y-point speed, /1 is the cosine of the particle’s pitch-angle, L(s)™> = —dIn B(s)/ds is | respectively, with Hpeak X MM(Teross/Tsc); 4) Too weak scattering with
)éTign;;rth?Fssgacrlgg the fo.cusmg Ie_n.gth of the. n_w?gne’.clc fleld_, and Dy, (1) is the pitch-angle isotropic injection: almost isotropic Wl.th depletion towards ;1 = 0 if n = 1 and
Acaslaration diffusion coefficient. The initial distribution was chosen as converges to the pancake’'s PAD as 1 increases.
region? Contracting Loops (1~ U[—1;1] isotropic - Fig. 4 shows the escaping particles’ pitch-cosines as a function of their
:\g(\)’\gt)é;z%urce f(s=0;u,t=0)=0d(s)o(t) ¢ o(p+1) bi — directional beam |, escape time. The 'waves' of escaping particles in the intermediate and weak
| (1) pancake scattering regimes have periods of ~ 1.4 — 2.7 7¢;0ss, depending on n and 7.
II\_/IOV(\)IF-)eSrEiI’IcﬁggW"h where ~ U indicates a uniform distribution. | o sotropic Injection
Electrons |
2.2 Magnetic Field 0.8l
Flare EUV flare 0.6/ _
Ribbons arcade s |” < '
B(s) = By [1 +(n—1)|— ] (2) 0.4 3
Sm 5
Fig. 1: Cartoon representation of the standard flare model by Yu et al. [2020]. Figure taken sign(s) sy 0-21 : :
from http://www.astro.gla.ac.uk/cartoons/ L(S) - n [(77 _ 1)‘5‘n—1 T ‘ ‘] (3) 0.0—
1 Background where By = B(0) is the field strength at the loop mid point, s, = £/2 is the 1.0 Ell_dIre{:mml Seam injection
Fig. 1 shows a cartoon of the standard flare model. Particles are accelerated loop end point, with ¢ the loop length, n = B(smn) /By is the mirror ratio, and 08!’
somewhere in the reconnection current sheet and probably the loop top, and n controls how quickly or gradually the magnetic field changes with s. 06!
stream down to the foot points where they are either mirrored back into the 2.3 Pitch-angle scattering .
loop by the converging magnetic field or escape and produce hard x-rays _ _ . 0.41
(HXRs) in the dense chromosphere through Bremsstrahlung to form the flare | - EOERIE EERTIEN, G dug i Letlom o eollisons 0.2
ribbons. Some of these particles, however, must also escape into the less dense Dﬁﬁ(,u) = Dp(1 — ;L2). (4) 0.0
upper corona to form solar energetic particles (SEPs) where the propagation | Anisotropic scattering, e.g. due to turbulence, . o Pancake Injection
effects are different, i.e. magnetic turbulence plays a more important role '
compared to Coulomb collisions. We are interested in the relationship between Dﬁﬁiso(,u) = De(1 — MQ) ( u 4 e) , (5) 0.8;
particles producing HXRs and the observed SEPs: i.e. What fraction of L+ |ul 0.61
particles are released as SEPs? What is the correlation between the HXR where € ~ 0.045 for a Kolmogorov inertial range with dynamical effects <
spectrum or time profile and that of SEPs? [Agueda et al., 2008] >4
In order to build a conceptual understanding of the effects of different - Do .and Drs e e liezel @9 e ez pevalle) meen fitss petin [issedimi >
. . , & Wibberenz, 1970, 0.0 . . . . .
processes, we focus here on particles trapped in the flare’s lower loop and 0 : 10 15 >0 S5 30
extended the 1D model of Effenberger & Petrosian [2018] to specifically 3 1 (1 _ /ﬂ)z t [Teross)
mv_eStlgat_e the siffet: of & spat_lally vaIing meEmsie insle sl sofieple v >\H B 8V /—1 D,U,u(:“) O (6) Fig. 4: |u| of escaping particles as a function of their escape time for three different
anisotropic pitehianglelscatiering to yield the same scattering time. injections (isotropic injection top; bi-directional beam injection middle; pancake injection
bottom), n =2, n = 2, and anisotropic scattering with Dy ~ 0.007 (weak scattering).
Isotropic Scattering: Isotropic Injection Bi-directional Beam Injection Pancake Injection
LTORIS prarre iy VLD TELLIYL Dl ELuYndl bedll Ahrbert AL I AL LSRR A AL _ Spatlally varying magnetic field: ]_) traps partlcles in strong scattering

regime; 2) aids particles to escape in intermediate scattering regime.

- Anisotropic scattering: aids particles to escape in weak scattering regime.

- Average escape time only changes by a factor ~ 2 when a spatially varying
magnetic field and /or anisotropic scattering is present, compared to isotropic
scattering in a homogeneous magnetic field with a loss cone at the endpoints.
- Temporal profile of escaping particles: 1) relatively quick rise time followed
by slow decay phase; 2) most probable escape time can be quite different from
the average escape time; 3) can have multiple peaks due to periodic escape of
particles in weak scattering regime.

- Pitch-angle distribution of escaping particles: 1) evolve from beamed to
more isotropic over time; 2) shows depletion around 90° pitch-angles;

3) generally neither isotropic nor beamed.

Pancake Injection - Both the time profile and time integrated pitch-angle distribution of escaping
particles depend on the injected particles’ pitch-angle distribution, the
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Isotropic Scattering: n=32

102 — Isotropic Scattering: n=2 | scattering regime, and the magnetic field.
e o Anisotropic Scattering: n=32 |}
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Effenberger & Petrosian [2018] without a spatially varying magnetic field (solid lines) and a magnetic field with n = 32 (symbols) and n = 2 (dashed lines). Bottom row: A magnetic field
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Fig. 2: Average particle escape times as a function of scattering time (o< Dy L or oc DY) for three different injections (isotropic injection left; bi-directional beam injection middle;
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with n = 32 (symbols) and n = 2 (dashed lines) for anisotropic scattering. The isotropic scattering results are shown by the solid (n = 2) and dashed-dotted (n = 32) lines for comparison.




