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Introduction
In deeply inelastic lepton-nucleus scattering, hadron-nucleus
and heavy-ion collisions, multiple scatterings of energetic
partons in the nuclear medium lead to a broadening of the
average jet transverse momentum. This jet broadening phe-
nomenon offers a useful tool for probing the properties of
nuclear media, including the quark-gluon plasma formed in
high-energy heavy-ion collisions. Many theoretical frame-
works have been developed in the study of multiple scat-
terings and their subsequent effects. We will focus on the
Djordjevic-Gyulassy-Levai-Vitev (DGLV) energy loss model
[1] [2], as well as the Twist-4 collinear factorization frame-
work [3] [4]. Notably, DGLV assumes a factorization of the
hard production process and the subsequent jet evolution
in medium. In contrast, factorization is not assumed, but
appears to hold, in semi-inclusive deep inelastic scattering
(SIDIS) at Twist-4. The Twist-4 derivation [4] includes cross
talk between the production and evolution that is missing in
the energy loss formalism; we aim to quantify the impor-
tance of these neglected terms in energy loss calculations
and, ultimately, to derive energy loss formulae that respect
a rigorous factorization.

Figure 1: Two of the contributing Feynman diagrams to the
transverse momentum broadening in SIDIS at Twist-4 (re-
produced from [3]). The left diagram is topologically equiv-
alent to the one used for energy loss in Figure 2. The right
diagram includes cross talk between the parton production
and subsequent evolution, which is neglected in the energy
loss formalism.

In this work, we present predictions for the jet broadening
in heavy-ion collisions calculated using the DGLV energy loss
model. We investigate the asymptotic behaviour of these jet
broadening results from the energy-loss perspective, with a
view to making preliminary comparisons with transverse mo-
mentum jet broadening in SIDIS at Twist-4 presented by
Kang et al. [4].

Model and results
We consider two ways in which jet broadening can occur
from an energy loss perspective. First, a parton propa-
gating through the medium can undergo elastic scatterings
off medium constituents, in which transverse momentum is
transferred from the in-medium gluon to the parton. We
refer to this as the “collisional” or “leading order (LO)” mo-
mentum broadening. Second, interactions with the medium
can stimulate the emission of gluons off the parton, where
some transverse momentum is carried away by the emitted
gluon. This broadening is referred to as “radiative” or “next-
to-leading order (NLO)”. The radiative broadening can be
computed using the DGLV energy loss model.

DGLV energy loss
The study of medium-induced parton energy loss offers a
valuable technique for the characterisation of the highly-
dense matter produced in ultra-relativistic heavy ion colli-
sions. The initial hard collisions produce high-energy par-
tons, which then lose energy via elastic scattering and
medium-induced radiation as they propagate through the
dense medium. In this section, we present the Djordjevic-
Gyulassy-Levai-Vitev (DGLV) formalism for the radiative en-
ergy loss.

Gyulassy et al. [1] used the opacity series expansion
method to compute the radiative energy loss for a fast mass-
less parton in the QCD medium, in the soft gluon emission

limit (x � 1). Djordjevic and Gyulassy [2] later gener-
alized the massless result of GLV to derive the heavy quark
medium-induced radiative energy loss to all orders in opacity
(L/λ)n, for x� 1.

From the results of Djordjevic and Gyulassy et al. we de-
fine the distribution of inclusive gluon radiation to first order
in opacity for a heavy quark of mass M as
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where E is the initial parton energy, x is the fractional energy
radiated, |q⊥| is the magnitude of the transverse momentum
transfer between a target parton and a jet, |k⊥| is the mag-
nitude of the transverse momentum of the radiated gluon, λ
is the mean free path of the gluon, L is the effective length
of the medium through which the parton travels, µ is the
chromoelectric Debye screening mass, and mg = µ/

√
2 is

the asymptotic plasmon mass.

Transverse momentum broadening
We now consider the transverse momentum broadening of a
single deconfined parton due to the presence of the medium.

Figure 2: After the initial hard process, the deconfined parton
traverses the medium. Transverse momentum can be trans-
ferred to this parton via collisions with the medium (q⊥) or
the stimulated emission of soft gluons (k⊥).

The collisional (LO) and radiative (NLO) broadening of
the parton are computed (at first order in opacity) as

〈p2T〉LO ≡
L

λ

∫
d2q⊥ q2⊥

d2σqg→qg
d2q⊥

, (2)
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where d2σqg→qg/d2q⊥ = 2α2s/(q2⊥+ µ2)2 is the cross sec-
tion for elastic quark-gluon scattering.

Finally, the vacuum-subtracted total transverse momen-
tum broadening is the difference between the momentum
broadening in nucleus-nucleus and proton-proton collisions,
〈p2T〉tot ≡ 〈p2T〉tot,AA − 〈p2T〉tot,pp

= e−〈Ng〉0+1〈p2T〉LO + (1− e−〈Ng〉0+1)〈p2T〉NLO,0+1

− (1− e−〈Ng〉0)〈p2T〉NLO,0 , (4)
where 〈Ng〉 is the average number of stimulated gluon emis-
sions, and numerical subscripts indicate orders in opacity.

Figure 3: The LO, NLO and vacuum-subtracted total trans-
verse momentum picked up by a charm quark (M = 1.5

GeV). We observe log(E/µ) and (log(E/µ))2 scaling for
〈p2T〉LO and 〈p2T〉NLO,1 respectively, which agrees with the
estimates in (5) and (6).

Asymptotic scaling
In preparation for making comparisons with the momentum
broadening within the Twist-4 collinear factorization frame-
work, where E � µ, we consider the asymptotic behaviour
of the collisional and radiative broadenings presented in (2)
and (3). While the integral for the collisional broadening can
be computed analytically in the limit E � µ, more careful

work is required for the radiative component. By ignoring
the kinematic limits and performing a suitable shift of inte-
gration variables, we determined an approximate form for the
radiative broadening. In the massless limit (M = mg = 0)
of (1), we obtained
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These scalings were verified numerically in Figures 4
and 5, where the massless limit of (1) was used to com-
pute 〈p2T〉NLO,1 with the appropriate finite kinematic limits
(qmax =

√
3Eµ and kmax = 2x(1− x)E). However, there is

a disagreement in the overall sign for the NLO broadening,
which can be attributed to finite kinematic effects.

Figure 4: The ratio of NLO to LO transverse momentum
broadening as a function of E/µ, for various values of µ.
Despite the finite kinematic limits, the expected logarithmic
behaviour from the analytic scaling estimates in (5) and (6)
is observed clearly.

The ratio −〈p2T〉NLO,1/〈p2T〉LO(E/µ) was computed
for fixed values of µ and L, and fits of the form
−〈p2T〉NLO,1/〈p2T〉LO(E/µ) = a + b log(E/µ) were per-
formed. The fit parameter b is plotted as a function of
the dimensionless quantity µL in Figure 5.

Figure 5: For the chosen plasma parameters, the analytic
scaling estimates predict a value for the fit parameter b =

8αs/3π ' 0.255. This is a factor of 2 larger than the nu-
merical result of b ' 0.126. However, such a deviation was
expected within the approximations used to generate (5) and
(6).

Although we observe some slight µL dependence for the
fit parameter b shown in Figure 5, it was deemed insignif-
icant when compared with the overall constant intercept
value.

Conclusions and future work

Up to the expected accuracy, we have numerically verified
that within the DGLV energy loss framework, the ratio of
NLO to LO transverse momentum broadening scales like
log(E/µ) for sufficiently large energies. This is consistent
with our expectations for the jet broadening in SIDIS at
Twist-4. For the next stage in this work, we will proceed
with the numerical analysis of the Twist-4 jet broadening
model presented by Kang et al. [4].
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