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Observation
For decades, inclusive radiative processes in QED and QCD have shown non-zero emission
probabilities in classically forbidden regions of the phase space, naively violating energy
conservation.

In particular, one may observe in the literature probability distributions with support beyond
x = 1, where x is the fraction of the total energy carried off by the radiated particle. This is
classically forbidden; an apparent violation of energy-momentum conservation!

This observation suggests that the matrix element iM is in some sense disjoint from the
limitations of the kinematics, in that the matrix element is not necessarily zero beyond the
physically permitted phase space defined through the kinematics.

This Motivates a Question
We would like to probe these observations of the large-x behaviour of radiative processes, and
to answer the question:

Are non-zero matrix elements in classically forbidden regions physically reasonable, and
what does this mean for the probability distribution?

Probing the Question in a Simpler Field Theory
We investigate this phenomenon by looking to a model free from the non-trivialities of gauge
theories. We’d also like to isolate the physics of emission off a single leg, such that there is
only one contributing Feynman diagram for the process. To this end, we construct a scalar
field theory

L := Lfree scalars + Linteraction, (1)

where Lfree := LA + LB + LC + LD such that
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and similarly for A→ B,C,D. The quantities ϕ = ϕ(xµ) are real scalar fields, and mA

denotes the mass of the particle field A, and similar for A→ B,C,D. For simplicity, we take
mA = mB = 0. We take the interaction part of the Lagrangian to be

Linteraction :=
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gSϕCϕCϕD, (3)

where g, gA and gS are coupling constants.

Differential Cross-Section for One Particle Emission
In our scalar field theory, consider the differential scattering cross-section for the radiative
process with Feynman diagram in Figure 1.

Figure 1: A Feynman diagram for one particle emission in our scalar field theory.

We have that
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where s := (p2 + p3)
2. E1, E4 and E5 are the energies of particles C, B and D respectively,

and pi is the momentum in the ith leg. The emitted particle D is taken to have momentum
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where E5 := x5E is the energy of the emitted particle, written in terms of the fraction x5 of
the total energy carried off by the emitted particle.

First Kinematic Constraint: Real Momenta
In order for our calculations to correspond to experimental observables, it is necessary that all
momenta are real numbers, so we must enforce that the argument of the square root in kz5
is positive. One may simply employ an overall Heaviside theta function to serve this purpose.
This provides a lower bound on the energy for emission to be permitted!

Momentum Conservation
Next, one can readily perform the integral over the momentum conserving Dirac delta
function, ∫

d3p4
δ(4)(p2 + p3 − p1 − p4 − k5)

E4(p4)

=
δ(2E − E1 − E4(p1,k5)− E5)

E4(p1,k5)
, (6)

where we used that p2 + p3 = 0 and E2 = E3 = E. The spatial integral over p4 fixes
p4 = −(p1 + k5), and so E4(p4)→ E4(p1,k5).

Energy Conservation
The integral over the energy conserving Dirac delta function fixes the permitted values of
pz1 such that the total energy is conserved throughout the process:∫

dpz1δ(2E − E1(p1,mC)− E4(p1,k5)− E5)

=

∫
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, (7)

where J is a Jacobian for the change of variables in the Dirac delta function, and we define
pz1,0± to be the two solutions of the equation[
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which was obtained by rearranging the equation for the roots of the argument of the
energy-conserving Dirac delta function in the first line in Eq. (7).

Second Kinematic Constraint: Excluding Unphysical Energies
One obtains another kinematic constraint, now from the energy-conserving Dirac delta
function in Eq. (7); we must enforce that

((2− x5)E)2 − E1(p1,mC)
2 − E4(p1,k5)

2 > 0. (9)

This is motivated by the form of Eq. (8); we may in principle end up with solutions in which
the quantity in square brackets is negative. This is unphysical, but we would be wholly
unaware of this configuration should it arise, owing to this quantity being squared in Eq. (8)
and therefore unsensitive to an overall minus sign.

Yet More Constraints from the Kinematics
Since all energies are squared therein, Eq. (8) is a quadratic polynomial in pz1. One may collect
powers of pz1 in order to extract the coefficients a, b and c that solve the quadratic equation

pz1,0± =
−b±

√
b2 − 4ac

2a
, (10)

where c+ bpz1,0± + a(pz1,0±)
2 = 0. Upon inspection of Eq. (10), one notes that for our

momenta to be measurable, we must ensure that the discriminant is positive, so that we
have pz1,0± ∈ R. Furthermore, we choose pz1 > 0, so we are forced to impose further constraints
on the overall sign of the coefficients to ensure that we always take pz1,0± > 0. This leads to an
additional six conditions that constrain our choice of roots pz1,0± depending on the overall sign
of the coefficients.

Conditional Probability Distribution
One finally has all the bits and pieces required to calculate the total cross-section for the one
particle emission process in our scalar field theory, by numerically evaluating the remaining
phase space integrals in Eq. (4). One can now compute the quantity

dσ2→3

dx5
/σ2→2, (11)

which gives the conditional probability distribution for the emission process, as weighted by
the two-to-two (no-emission) process, with total cross-section denoted σ2→2. We plot this
quantity as a function of x5 in Figure 2.

Figure 2: Conditional probability distribution for single particle emission in a scalar field theory defined by the
Lagrangian in Eq. (1).

Discussion
We first note that our distribution has enlargement at large x5, in contrast with particle
emission within a gauge theory; there, one has enlargement at small x5 due to the higher
weight from the polarization vectors. This feature of our theory allows us to be very sensitive
to the behaviour of the distribution at large x5, near the kinematic cut-off at x5 = 1.

The shape of the distribution suggests that the matrix element is blowing up as we
approach the kinematic bound of x5 = 1, but we also observe a squeezing of the
distribution to zero as x5 approaches 1. This suggests that the matrix element is not
diverging so badly as to overcome the squeeze in the kinematics.

Conclusion
We have obtained results suggesting that indeed, the matrix element need not necessarily
vanish beyond the kinematic bounds, but that any spillover of the probability distribution
into this region is in fact suprious; correctly enforcing the kinematics leads to a smooth limit of
the probability going to zero at the kinematic bounds, as expected by energy
conservation.
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