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Drive a quantum system from an arbitrary
initial state into a target state, stabilise it
there and protect against noise.

Coherent feedback control

In this work we consider control schemes which
drive a quantum system into a target state by
sequential coupling to ancillary quantum sys-
tems. These ancillary systems are referred to
as the controllers. A suitable coupling between
system and controllers is necessary to achieve
convergence to the target state.

Figure 1: A quantum system (blue) is driven gradually by

a sequence of interactions with other quantum systems

(green) into a target state.
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Conditions for convergence to
the target state

In order to successtully drive a system, inde-
pendent of its initial state, into a given target
state |T") € Hs, where H; is the Hilbert space
of the system, the following theorem can be ap-
plied.

Theorem

Let $(p) = ¥; ./\4Z~,0]\4Z-Jr be a trace-preserving
quantum channel with Kraus operators M,
obeying the condition

M;|T) =z |T) ,

z; € C, with respect to some target state
T € H, and satisfying

Span{M; \T}}Z =H,.
Then any state p converges to the target

state under repeated application of the quan-
tum channel $.

Any such channel $ can be implemented by a
unitary time evolution U which couples the sys-
sem to a suitable ancilla system in initial state

¢), such that

$(p) = TrU(|9) (9| ® p)U'].
where the Kraus operator M; = (¢|U|@).

—

Example: Weak Swap

r

['his unitary coupling U = exp (—iAS), where
S(|Y)®|p)) = |@) ® [1)) results in a weak swap
between (d-level) system and controller states.
The real parameter 0 < A < 5 determines the
strength of the swap.

The fidelity increases in an exponential fash-
ion as a function of the number of iterations of
the control scheme. The weak swap is robust
against errors in implementation and is able to
protect the system against noise.
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Figure 2: Weak swap between two-level systems: Evolu-
tion of the Bloch sphere of states, represented by its lower
hemisphere, towards the target state (red point) after se-

quential weak swaps with A = <. The orange lines show

the evolution of three states (eigenstates of Pauli opera-

tors) during the interaction with controllers initialised in
the target state |T) = (|0) + [1)) //2.
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Figure 3: Quantitative assessment of the control abilities

of the weak swap in the presence of dephasing noise and

depolarisation noise. The plots show the averages fidelity

(F) = Y, (T|pn|T) /N of the target fidelity over the

sequence p,, for trajectories of length NV = 10°.

Potential applications

Preparation of orbital angular momentum
and polarisation states of light using adi-
tional degrees of freedom. Robust control of
an atom in a cavity using photons. Prepa-
ration of entangled states without direct it-

eration between entangled pairs. Quantum

computing, mitigating noise 1 state prepa-
ration and gate execution.




