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Introduction

Nonlinear optical processes can be used in new quantum commu-
nication schemes. Here we look at difference-frequency generation
(DFG).
•DFG has applications in quantum teleportation schemes,
measurement-free error correction, etc.,
•DFG is the stimulated form of spontaneous parametric
down-conversion (SPDC),
• application requires a quantum optical description of DFG.

Difference-Frequency Generation

DFG is a second order nonlinear optical process. The
nonlinear polarization (P3) of the medium produces the difference-
frequency beam (E3):

E3 ∝ P3 = 2 ε0 χ
(2)E1 E

∗
2 . (1)

•Pump (ω1) and signal (ω2) beams enter the nonlinear crystal and
produce an idler beam (ω3),
• ω3 = ω1 − ω2 (difference-frequency),
• in classical optics, DFG is used for parametric amplification or phase
conjugation.

Figure 1:Single photon level of DFG process

Classical Optics

Coupled wave equations for the signal (As) and idler (Ai) amplitudes
are obtained from the nonlinear Maxwell equations, and solved, giving:

As(z) = As(0) coshκz, (2)
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Here z is the propagation distance, κ is a generalised wavenumber and
the respective refractive indices of the beams are n2 and n3.

Quantum Formulation

The nonlinear process is described by the interaction term of the
quantized Hamiltonian, with the right combination of annihilation
and creation operators that will destroy a photon in the pump
mode and create photons in the signal and idler modes,
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−iχ(2)

eff~3/2

√
ε0(2π)3

∫
V

d3r
∫

d3k1d3k2d3k3e−i(k3+k2−k1)·r ei(ω3+ω2−ω1)t

â(k1)â†(k2)â†(k3) + h.c. .

(4)
Initial state: |ψi〉 = |1Up〉p |1Sl〉s |0〉i.
Output state after crystal (here q denotes transverse wave vectors):

|ψout〉 =
∫

d2q2d2q3 Φ(q2,q3) â†(q2) â†(q3) |1Sl〉s |0〉i . (5)
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Main Results

In order to calculate |ψout〉, we need an appropriate expression for the
mode function Φ. We found that the decomposition of Φ is written
in the product basis:

Φ(q2,q3) =
∑
k,m

N p
k,m Ik(q3) Sm(q2), (6)

which gives,
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Output state of DFG is a product state:

|ψd〉 ≡
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k,l |1Ik〉

)
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where N p
k,l = 1

(2π)2

∫
d2ρ I∗k(ρ) S∗l (ρ) Up(ρ). (9)

The coefficients N p
k,l can be thought of as the overlap, N p

k,l = 〈1Ik|1Id〉 ,
of an idler photon with a spatial mode given by Ik(ρ) and the idler
mode of the photon created by DFG which we have called Id(ρ). Here
ρ is the transverse position coordinates.
The mode of the idler is therefore given by Id(ρ) = S∗l (ρ) Up(ρ), a
product of the complex conjugate signal mode and of the pump mode.

Conclusion
•General mode decomposition is used instead of Schmidt
decomposition,
•we derive a quantum optical description of DFG photon modes,
• the derived result agrees with the classical result, shows phase
conjugation, amplification and that the output state is not
entangled.


