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Boolean arithmetic, universality and Toffoli gates

In classical computation, the reversible Toffoli gate is a universal logic gate, i.e., any logic circuit

L which computes a Boolean function of the form f : {0, 1}n → {0, 1} can be decomposed into
a reversible logic circuit L′, equivalent in operation, made up of only Toffoli gates.
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Figure 1. Truth table and circuit for a Toffoli gate

Decomposition of Toffoli gates

The classical Toffoli logic gate admits a realization as a unitary quantum logic gate on the merit

of being reversible. As a quantum logic gate (CCX), though not universal, the Toffoli gate is a

substratum for Boolean arithmetic across quantum logical registers and ensures that any classical

computation is reproducible on a quantum computer

CCXabc : |a, b, c〉 7→ |a, b, c⊕ a · b〉 . (1)

However, Toffoli gates are not easy to implement on current quantum hardware:

Not natively supported. Current quantum hardware instead decomposes Toffoli gates onto a

physically implemented (native) universal gate made up of several single qubit gates and one

two-qubit gate [1], i.e., no less than 2n two-qubit gates (CX, CZ, etc) for a n-controlled Toffoli
gate [2] and the traditional three-qubit Toffoli decomposes into six CX and seven T/T † gates:

• • • • T •

• = • • T T †

H T † T T † T H .

(2)

Decoherence. Despite high fidelity implementations (& 99% for superconducting qubits, see

Reference [3]), the effects of decoherence are considerable and set a limit on the number of

two-qubit gates over a set of qubits in a computation lest it fail.

Relative phase Toffoli gates

Variants of Toffoli gates, collectively called relative phase Toffoli gates, due to their operation

being equivalent to that of a Toffoli gate up to some undesirable phase:

Smaller in circuit size. Margolus gate (RCCX) is an optimal three-qubit relative phase

Toffoli gate up to a relative shift (|101〉 7→ − |101〉), that uses three CX gates and four
single-qubit gates [4, 5]:
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Use beyond commonly conceived scenarios. Optimization of multiply-controlled full

Toffolis via relative phase Toffoli replacements [6].

Gate characterization

We characterize and compare the performances of a three-qubit Toffoli gate (CCX) andMargolus

gate (RCCX) in two ways on IBM’s superconducting quantum processors through the Qiskit

SDK [7].

Via quantum state tomography

We prepare an example state with a CCX in comparison to one prepared with a RCCX gate.

|ψ〉 = CCX012 |1〉0 |+〉1 |0〉2 = RCCX012 |1〉0 |+〉1 |0〉2 ,

=
1√
2
|1〉0 (|0〉1 |0〉2 + |1〉1 |1〉2),

= |1〉0
∣∣Φ+

〉
12
, (4)

then perform state tomography on qubits 1, 2 (maximally entangled Bell state), experimentally
prepared on IBM Q’s seven-qubit quantum processor ibmq_casablanca.

Figure 2. (a) Real and (b) imaginary part of the measured density matrix of the state in equation [4] prepared with a

CCX gate on IBM Q’s ibmq_casablanca. Similarly, (c) and (d) are real and imaginary parts, respectively, of the same

state prepared with a RCCX gate.

To quantitatively evaluate the performance of the two gates in generating the Bell state in

equation [4], we measure the fidelity for two quantum states ρ and σ, defined as F (ρ, σ) =

Tr(
√
ρ1/2σρ1/2) [8]. For this particular instance they were measured (within 95% confidence

intervals) to be F (|Φ+〉〈Φ+| , σCCX) = 0.929 ± 0.003 and F (|Φ+〉〈Φ+| , σRCCX) = 0.972 ± 0.008 re-
spectively.

Via quantum process tomography

For each a circuit, we perform process tomography and reconstruct a description of the quantum

channel E that describes the circuit’s operation on the aforesaid processor.

Figure 3. (a) Real and (b) imaginary part of the measured χ-matrix representation of the quantum channel ECCX
prepared with a CCX gate on IBM Q’s ibmq_casablanca. Similarly, (c) and (d) are real and imaginary parts,

respectively, of the quantum channel ERCCX prepared with a RCCX gate.

The average gate fidelity of a quantum channel E with respect to a target unitary U measures
how close E approximates U , is given by

F̄ (E , U) =
∫
dψ 〈ψ|U †E(|ψ〉〈ψ|)U |ψ〉 , (5)

E(ρ) =
∑
i,j

χi,jσiρσj Evolution of a density matrix ρ w.r.t the χ-presentation of E . (6)

where the integration is over the uniform Haar measure and E(·) is an evolution with respect to
the quantum channel E (See references [9, 10] for closed forms of equation 5). We measured
the average gate fidelities to be F̄CCX(E , U) = 0.917 ± 0.005 and F̄RCCX(E , U) = 0.958 ± 0.002
respectively.

Case studies: Quantum factoring ofN = 21

In 2012 [11], and recently in 2019 [12], the integer N = 21 was factored, setting the record for
the largest integer factored with Shor’s quantum factoring algorithm [13].

|0〉 / H⊗n • QFT †

|1〉 / Ux
a

Figure 4. Schematic of the order-finding routine for Shor’s algorithm for n qubits. The number of qubits in the
control register determines the bit-accuracy of the value of the extracted order. The bottom (work) register has

the m qubits required to encode N . First, the control and work registers are initialized, then conditional modular
exponentiation is performed, indicated by the controlled unitary and an inverse quantum Fourier transform is

applied to the control register followed by a standard computational basis measurement.

First scheme (Martín-López et al. [11]):

Iterative via real-time conditionals operations and feed forward operations, recycling a single-qubit in the

control register on each iteration.

Uses full Toffolis to implement the modular exponentiation operation.

Full factoring not achieved, falls one iteration short of full factorization of N = 21.

Second scheme (Amico et al. [12]):

Pseudo-iterative via splitting the iterations into separate circuits and reseting the computation on each

iteration, using a single-qubit in the work-register.

Without the use of the continued fractions algorithm, the order is extracted via a statistical test instead.

Also uses full Toffolis, in a similar fashion to the first scheme.

Our scheme (Skosana and Tame. [14]):

Non-iterative uses three qubits in the control register.

Uses relative phase Toffolis while preserving the functional correctness of the modular exponentiation

operation.

Fully factors N = 21 by giving the correct order via the continued fractions algorithm.
Entanglement across the registers in the circuit is verified, which is a requisite for the speed-up of the

algorithm.
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