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Introduction

In response to small perturbations, a black hole (BH) produces damped
waves called quasinormal modes (QNMs) as it returns to its
equilibrium state [1]. The QNM frequencies (QNFs), denoted by ω, are
complex-valued to account for this damping . Computing them requires
solving second-order differential equations (DEs). The present research
investigates a potential new approximation method for computing QNFs
in the form of Physics-informed neural networks (PINNs). As a first
step, PINNs were applied to solve an inverse problem (i.e. where the
unknown parameter, ω, within the DEs is computed using data for the
wave-functions satisfying the DEs). We focused on the perturbations of
near extremal Schwarzschild-de Sitter (SdS) and Reissner-Nordström-de
Sitter (RNdS) black holes whose effective potential is given exactly by an
inverted Pöschl-Teller potential.

Figure 1: A time-domain profile for gravitational perturbations of a Schwarzschild black
hole. At early times (II) the QNM signal dominates the signal [2, 3].

Methodology

PINNs are neural networks that are trained to solve DEs by imposing
physics-constraints such as boundary and/or initial conditions [4]. To
build the PINNs, we are using the DeepXDE library in Python [5].

Two components of PINNs:
1 The physics-uninformed feed-forward neural network (FNN)
represents the surrogate of the solution to the DEs (left of figure 3).

2 The loss-function in which the physics-constraints are embedded that
make FNN approximations physics-informed (right of figure 3).
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Figure 2: The stages for setting up and training PINNs. In the training phase, weights
and biases within the FNN are iteratively updated via minimization of the physics-
informed loss function to steer the FNN towards an accurate approximate solution.

Perturbations of spherically symmetric BHs

Spherically symmetric black holes have space-time metrics
generally given by [6]:

ds2 = −fdt2 + f−1dr2 + r2(dθ2 + sin2θdφ2),

where r is the radial distance from the center of the BH. The metric
function (f ) for SdS & RNdS BHs is [6, 7]:

f = 1− 2M
r

+ Q2

r2 −
Λr3

3
,

whereM and Q are the mass and electric charge of the BH in geometrical
units and Λ is the cosmological constant (Q = 0 for SdS BHs).

Perturbation equations of BHs are Schrödinger-like differential equa-
tions that encode the dynamics of BH perturbations. In general, we have
[6]:

d2ψ

dx2 + (ω2 − V (r))ψ = 0,

where x is the “tortoise” coordinate related to r: dr/dx = f [2].
Additionally the effective potential for massless scalar perturbations of
SdS and RNdS BHs is [7, 8]:
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where l is the multipole quantum number and Q = 0 for SdS BHs.

QNM wave-functions are solutions to the Schrödinger-like
perturbation equations that satisfy the boundary conditions:

ψ(x) ∼ exp(±iωx), x→ ±∞.

Physically, this implies plane waves going down the BH horizon and
going out at spatial infinity [9].

Effective potential in the near extremal limit

Near extremal SdS & RNdS black holes refer to a cases where
the cosmological horizon is very close (in the r coordinate) to the BH
horizon. In this limit, the effective potential of the SdS and RNdS are
given exactly by an inverted Pöschl-Teller potential [6, 7]:

V (x) = V0

cosh2(κ
b
x)
,

where V0 = κ2
bl(l + 1) for massless scalar perturbations and κb is the

surface gravity associated with the BH horizon. For massless scalar fields,
the exact QNM wave-functions and QNFs are [6, 7, 10], respectively:
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Here ξ−1 = 1 + exp (−2κ
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Figure 3: The set-up for the PINN used to solve our perturbation equation with the effective potential given by an inverted Pöschl-Teller potential. The equation is in terms of
y = tanh(x), which gives a finite domain (-1,1), and it is split into real and imaginary parts for easier implementation in the DeepXDE library. The training hyperparameters
used for all our computations: FNN with 3 hidden layers, 20 nodes per layer; tanh as a non-linear activation function; learning rate of 0.001; "adam" as an optimiser; training
data consisting of 100 domain points and a dataset with 50 uniformly distributed true values of the wave-funtion ψ(y) in the spatial domain [-0.9,0.9].

Results

Table 1: PINN approximations of the QNFs (in geometrical units) for
massless scalar perturbations of SdS & RNdS BHs.

PINN Exact [6, 7] L2
n l ω

Re
/κ

b
ω
Im
/κ

b
ω
Re
/κ

b
ω
Im
/κ

b
relative error

0 1 1.32287 -0.49997 1.32288 -0.50000 0.00214%
2 2.39790 -0.50002 2.39792 -0.50000 0.00106%
3 3.42761 -0.50032 3.42783 -0.50000 0.01105%
4 4.44096 -4.98165 4.44410 -0.50000 0.08128%
5 5.43513 -0.50716 5.45436 -0.50000 0.37463%

0.75 0.50 0.25 0.00 0.25 0.50 0.75
y

2

1

0

1

2

3

4

5

6

ps
i(y

)

L2 relative error Re[psi]: 0.00235 % 
L2 relative error Im[psi]: 0.00445 %

Re[psi] (exact)
Im[psi] (exact)
Re[psi] (approx.)
Im[psi] (approx.)

Figure 4: Plot of the PINN
approximation of QNM
wave-function for n = 0,
l = 1 from table 1.

Conclusion

Our results indicate that PINNs have the capacity to accurately
approximate QNFs for massless scalar perturbations of SdS and RNdS
BHs which solved as inverse problems. Future considerations include
going beyond inverse-problems by applying PINNs on general black
hole perturbation equations without data for QNM wave-functions
(e.g. asymptotically flat Schwarzschild black hole).
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