Quasinormal modes in the large angular momentum limit: an inverse multipolar expansion analysis

Anna Chrysostomou
supervised by Prof. Alan Cornell

SAIP2021 | 27 July 2021
What are (black hole) quasinormal modes?

QNMs: an eigenvalue problem
2.1 The BH wave equation
2.2 Form of QNM potentials

Dolan-Ottewill multipolar expansion method
3.1 How it works
3.2 QNFs and QNM wavefunctions

Conclusions
Quasinormal mode: "ringdown"

Quasinormal mode: "ringdown"

Quasinormal mode and frequency

\[\Psi(x^\mu) = \sum_{\ell,m} \frac{\psi_{sn\ell}(r)}{r^{(d-2)/2}} e^{-i\omega t} Y_{\ell m}(\theta_i), \quad \omega_{sn\ell} = \omega_R - i\omega_I \]

- \(\mathbb{R}e\{\omega\} = \) physical oscillation frequency
- \(\mathbb{I}m\{\omega\} = \) damping \(\to \) dissipative, "quasi"
Quasinormal mode and frequency

\[\Psi(x^\mu) = \sum_{\ell,m} \frac{\psi_{s\ell m}(r)}{r^{(d-2)/2}} e^{-i\omega t} Y_{\ell m}(\theta_i), \quad \omega_{s\ell m} = \omega_R - i\omega_I \]

- \(s \): spin of perturbing field
- \(m \): azimuthal number for spherical harmonic decomposition in \(\theta_i \)
- \(\ell \): angular/multipolar number for spherical harmonic decomposition in \(\theta_i \)
- \(n \): overtone number labels QNMs by a monotonically increasing \(|\text{Im}\{\omega\}|\)
What is the significance of these BH QNMs?

What theoretical gleanings can we extract?

- QNM frequencies are *independent* of exciting stimulus
 ⇒ encode characteristic information about the BH source
What is the significance of these BH QNMs?

What theoretical gleanings can we extract?

• QNM frequencies are independent of exciting stimulus
 ⇒ encode characteristic information about the BH source
• QNFs of \((d + 1)\)-dimensional AdS BH coincide with poles of retarded Green’s function in \(d\)-dimensional CFT
What is the significance of these BH QNMs?

What theoretical gleanings can we extract?

- QNM frequencies are independent of exciting stimulus ⇒ encode characteristic information about the BH source
- QNFs of \((d + 1)\)-dimensional AdS BH coincide with poles of retarded Green’s function in \(d\)-dimensional CFT
- BH wave equations = window to QM description of BH?

 Highly damped (asymptotic) QNFs related to area quantisation of BH event horizon?

 = historical motivation for \(n \to \infty\)
What is the significance of these BH QNMs?

What theoretical gleanings can we extract?

- QNM frequencies are independent of exciting stimulus
 \Rightarrow encode characteristic information about the BH source
- QNFs of $(d+1)$-dimensional AdS BH coincide with poles of
 retarded Green’s function in d-dimensional CFT
- BH wave equations = window to QM description of BH?
 Highly damped (asymptotic) QNFs related to area
 quantisation of BH event horizon?
 $= \text{historical motivation for } n \to \infty$
- $\ell \to \infty$: more than numerical aid?
The QNM eigenvalue problem

Black hole wave equation:

\[
\frac{d^2}{dx^2} \Phi(x) + [\omega^2 - V(r)] \Phi(x) = 0, \quad \frac{dr}{dx} = f(r)
\]
QNMs of integer spin:

\[V_{eff}(r) = \frac{f(r)}{r^2} \left[\ell(\ell + d - 3) + \frac{(d - 2)(d - 4)}{4} + \frac{P}{2r^{d-3} \mu} \right] \]

\[f(r) = 1 - \frac{2\mu}{r^{d-3}} \]

<table>
<thead>
<tr>
<th>perturbation type</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar</td>
<td>((d - 2)^2)</td>
</tr>
<tr>
<td>electromagnetic: scalar*</td>
<td>(d(d - 4))</td>
</tr>
<tr>
<td>electromagnetic: vector</td>
<td>(-(d - 4)(3d - 8))</td>
</tr>
<tr>
<td>gravitational: vector</td>
<td>(-3(d - 2)^2)</td>
</tr>
<tr>
<td>gravitational: tensor*</td>
<td>((d - 2)^2)</td>
</tr>
</tbody>
</table>

* \(d > 4\)
QNMs of half-integer spin:

\[V_{1,2}(r) = \pm F(r) \frac{\partial}{\partial r} W + W^2 \]

<table>
<thead>
<tr>
<th>perturbation type</th>
<th>(F(r))</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin-1/2</td>
<td>(f)</td>
<td>(\sqrt{f \kappa/r})</td>
</tr>
<tr>
<td>spin-3/2: TT*</td>
<td>(f)</td>
<td>(\sqrt{f \kappa/r})</td>
</tr>
<tr>
<td>spin-3/2: non-TT</td>
<td>(f)</td>
<td>(\sqrt{f \kappa/r} \times z_{\lambda=0})</td>
</tr>
</tbody>
</table>

* \(d > 4 \)

\[
\kappa^2 = \ell + \frac{(d-2)^2}{4} \left(1 - \frac{d-4}{d-2} \frac{2\mu}{r^{d-3}} \right), \quad \kappa = \ell + \frac{(d - 2)}{2}
\]

\[
z_{\lambda=0} = \frac{\kappa^2 - \frac{(d-2)^2}{4} \left(1 - \frac{d-4}{d-2} \frac{2\mu}{r^{d-3}} \right)}{\kappa^2 - \frac{(d-2)^2}{4} \left(1 - \frac{2\mu}{r^{d-3}} \right)}, \quad \kappa = \ell + \frac{(d - 2)}{2}
\]
The QNM eigenvalue problem

Black hole wave equation:

\[
\frac{d^2}{dx^2} \Phi(x) + [\omega^2 - V(r)] \Phi(x) = 0, \quad \frac{dr}{dx} = f(r)
\]

→ just a second-order ODE?
The QNM eigenvalue problem

Black hole wave equation:

\[
\frac{d^2}{dx^2} \Phi(x) + \left[\omega^2 - V(r) \right] \Phi(x) = 0, \quad \frac{dr}{dx} = f(r)
\]

→ actually: QNM boundary conditions

purely ingoing: \(\Phi(x) \sim e^{i\omega x} \) \(x \to -\infty \) \(r \to r_H \) \(1 \)
purely outgoing: \(\Phi(x) \sim e^{-i\omega x} \) \(x \to +\infty \) \(r \to +\infty \) \(2 \)

Waves escape domain of study at the boundaries ⇒ dissipative
Dolan & Ottewill (2009)

A “new” computation method for BH QNMs through a novel ansatz based on null geodesics + expansion of the QNF in inverse powers of $L = \ell + 1/2$

$$\Phi(r) = e^{i\omega z(x)}v(r) \, , \, \omega = \sum_{k=-1}^{\infty} \omega_k L^{-k}$$

What are the major selling points?

- more efficient means of calculating detectable BH QNMs
- physically-motivated method
- easily extended to wavefunction computation
Components of the ansatz

\[v(r) = \exp \left\{ \sum_{k=0}^{\infty} S_k(r)L^{-k} \right\} , \quad z(x) = \int_{x}^{\infty} \rho(r)dx = \int_{b}^{x} b_c k_c(r)dx \]

\[k_c(r)^2 = \frac{1}{b^2} - \frac{f(r)}{r^2} \]
Components of the ansatz

\[v(r) = \exp \left\{ \sum_{k=0}^{\infty} S_k(r) L^{-k} \right\}, \quad z(x) = \int_{x}^{\infty} \rho(r) \, dr = \int_{x}^{\infty} b_c k_c(r) \, dr \]

\[r_c = \left. \frac{2f(r)}{\partial_r f(r)} \right|_{r=r_c}, \quad b_c = \left. \sqrt{\frac{r^2}{f(r)}} \right|_{r=r_c}, \quad k_c(r)^2 = \left. \frac{1}{b^2} - \frac{f(r)}{r^2} \right|_{r=r_c} \]
Components of the ansatz

\[v(r) = \exp \left\{ \sum_{k=0}^{\infty} S_k(r)L^{-k} \right\}, \quad z(x) = \int^{x} \rho(r)dx = \int^{x} b_c k_c(r)dx \]

\[r_c = \frac{2f(r)}{\partial_r f(r)} \bigg|_{r=r_c}, \quad b_c = \sqrt{\frac{r^2}{f(r)}} \bigg|_{r=r_c}, \quad k_c(r)^2 = \frac{1}{b^2} - \frac{f(r)}{r^2} \]

We generalise the consequent ODE

\[f(r) \frac{d}{dr} \left(f(r) \frac{dv}{dr} \right) + 2i\omega \rho(r) \frac{dv}{dr} + \left[i\omega f(r) \frac{d\rho}{dr} + (1 - \rho(r)^2) \omega^2 - V(r) \right] v(r) = 0 \]

We solve iteratively for \(\omega_k \) and \(S'_k(r) \) and sub into \(\omega \)
\[r_c = 3, \ b_c = \sqrt{27} \ \Rightarrow \ \rho(r) = \left(1 - \frac{3}{r}\right)\sqrt{1 + \frac{6}{r}} \]
QNF expansions for the Schwarzschild BH

\[r_c = 3, \ b_c = \sqrt{27} \quad \Rightarrow \quad \rho(r) = \left(1 - \frac{3}{r}\right) \sqrt{1 + \frac{6}{r}} \]

Sub \(v(r) = \exp\left\{\sum_{k=0}^{6} S_k(r)L^{-k}\right\} \), \(\omega = \sum_{k=-1}^{6} \omega_k L^{-k} \) into ODE

\[L^2: \quad 27\omega_{-1}^2 - 1 = 0 \quad \Rightarrow \quad \omega_{-1} = \pm \frac{1}{\sqrt{27}} \]

\[L^1: \quad 2i\omega_{-1} \left(1 + \frac{6}{r}\right)^{1/2} \left(1 - \frac{3}{r}\right) S_0' + \frac{54\omega_{-1}\omega_0}{r^2} + \frac{27i\omega}{r^3} \left(1 + \frac{6}{r}\right)^{-1/2} = 0 \]

\[\Rightarrow \quad \omega_0 = -\frac{i}{2\sqrt{27}} \]

\[\Rightarrow \quad S_0'(r) = \frac{\sqrt{27}}{r(r+6)(r-3)} \left[\left(1 + \frac{6}{r}\right)^{1/2} - \frac{\sqrt{27}}{r} \right] \]

\[\vdots \]
QNF expansions for the Schwarzschild BH

\[r_c = 3 \, , \, b_c = \sqrt{27} \implies \rho(r) = \left(1 - \frac{3}{r}\right)\sqrt{1 + \frac{6}{r}} \]

<table>
<thead>
<tr>
<th>(s)</th>
<th>(b_c(r) \sum_{k=-1}^{6} \omega_k L^{-k})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(L - \frac{i}{2} + \frac{7}{216L} - \frac{137}{7776L^2}i + \frac{2615}{1259712L^3} + \frac{590983}{362797056L^4}i - \frac{42573661}{39182082048L^5} + \frac{11084613257}{8463329722368L^6}i)</td>
</tr>
<tr>
<td>1</td>
<td>(L - \frac{i}{2} - \frac{65}{216L} + \frac{295}{7776L^2}i - \frac{35617}{1259712L^3} + \frac{3374791}{362797056L^4}i - \frac{342889693}{39182082048L^5} + \frac{74076561065}{8463329722368L^6}i)</td>
</tr>
<tr>
<td>2</td>
<td>(L - \frac{i}{2} - \frac{281}{216L} + \frac{1591}{7776L^2}i - \frac{710185}{1259712L^3} + \frac{92347783}{362797056L^4}i - \frac{7827932509}{39182082048L^5} - \frac{481407154423}{8463329722368L^6}i)</td>
</tr>
</tbody>
</table>

The uniform potential

\[\bar{L} - \frac{i}{2} - \frac{19}{108L} + \frac{295}{7776L^2}i + \frac{3853}{2519424L^3} - \frac{66089}{362797056L^4}i - \frac{165538573}{39182082048L^5} + \frac{54780211001}{8463329722368L^6}i\]

Perturbations of half-integer spin

| \(1/2\) | \(\bar{L} - \frac{i}{2} - \frac{11}{216L} - \frac{29}{7776L^2}i + \frac{1805}{1259712L^3} + \frac{27223}{362797056L^4}i + \frac{23015171}{39182082048L^5} - \frac{6431354863}{8463329722368L^6}i\) |
| \(3/2\) | \(\bar{L} - \frac{i}{2} - \frac{155}{216L} + \frac{835}{7776L^2}i - \frac{214627}{1259712L^3} + \frac{25750231}{362797056L^4}i - \frac{2525971453}{39182082048L^5} + \frac{292606736465}{8463329722368L^6}i\) |
Large multipolar limit: QNFs of a 4D Schwarz. BH

<table>
<thead>
<tr>
<th>ℓ</th>
<th>ω_s</th>
<th>ω_{em}</th>
<th>$\omega_{g.\text{vec}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$2.0213 - 0.0963i$</td>
<td>$2.0152 - 0.0962i$</td>
<td>$1.9968 - 0.0959i$</td>
</tr>
<tr>
<td>20</td>
<td>$3.9455 - 0.0962i$</td>
<td>$3.9424 - 0.0962i$</td>
<td>$3.9330 - 0.0961i$</td>
</tr>
<tr>
<td>40</td>
<td>$7.7944 - 0.0962i$</td>
<td>$7.7928 - 0.0962i$</td>
<td>$7.7880 - 0.0962i$</td>
</tr>
<tr>
<td>60</td>
<td>$11.6433 - 0.0962i$</td>
<td>$11.6423 - 0.0962i$</td>
<td>$11.6391 - 0.0962i$</td>
</tr>
<tr>
<td>80</td>
<td>$15.4923 - 0.0962i$</td>
<td>$15.4915 - 0.0962i$</td>
<td>$15.4891 - 0.0962i$</td>
</tr>
<tr>
<td>100</td>
<td>$19.3413 - 0.0962i$</td>
<td>$19.3407 - 0.0962i$</td>
<td>$19.3387 - 0.0962i$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ℓ</th>
<th>ω_{uni}</th>
<th>ω_D</th>
<th>ω_{RS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$2.1139 - 0.0962i$</td>
<td>$2.1161 - 0.0962i$</td>
<td>$2.2979 - 0.0961i$</td>
</tr>
<tr>
<td>20</td>
<td>$4.0398 - 0.0962i$</td>
<td>$4.0410 - 0.0962i$</td>
<td>$4.2276 - 0.0962i$</td>
</tr>
<tr>
<td>40</td>
<td>$7.8896 - 0.0962i$</td>
<td>$7.8902 - 0.0962i$</td>
<td>$8.0796 - 0.0962i$</td>
</tr>
<tr>
<td>60</td>
<td>$11.7389 - 0.0962i$</td>
<td>$11.7393 - 0.0962i$</td>
<td>$11.9297 - 0.0962i$</td>
</tr>
<tr>
<td>80</td>
<td>$15.5880 - 0.0962i$</td>
<td>$15.5883 - 0.0962i$</td>
<td>$15.7792 - 0.0962i$</td>
</tr>
<tr>
<td>100</td>
<td>$19.4371 - 0.0962i$</td>
<td>$19.4374 - 0.0962i$</td>
<td>$19.6286 - 0.0962i$</td>
</tr>
</tbody>
</table>

new!
Large multipolar limit: QNFs of a 4D Schwarz. BH

QNFs of integer spin → decrease

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>(\omega_s)</th>
<th>(\omega_{em})</th>
<th>(\omega_{g.vec})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.0213 (-0.0963i)</td>
<td>2.0152 (-0.0962i)</td>
<td>1.9968 (-0.0959i)</td>
</tr>
<tr>
<td>20</td>
<td>3.9455 (-0.0962i)</td>
<td>3.9424 (-0.0962i)</td>
<td>3.9330 (-0.0961i)</td>
</tr>
<tr>
<td>40</td>
<td>7.7944 (-0.0962i)</td>
<td>7.7928 (-0.0962i)</td>
<td>7.7880 (-0.0962i)</td>
</tr>
<tr>
<td>60</td>
<td>11.6433 (-0.0962i)</td>
<td>11.6423 (-0.0962i)</td>
<td>11.6391 (-0.0962i)</td>
</tr>
<tr>
<td>80</td>
<td>15.4923 (-0.0962i)</td>
<td>15.4915 (-0.0962i)</td>
<td>15.4891 (-0.0962i)</td>
</tr>
<tr>
<td>100</td>
<td>19.3413 (-0.0962i)</td>
<td>19.3407 (-0.0962i)</td>
<td>19.3387 (-0.0962i)</td>
</tr>
</tbody>
</table>

QNFs of half-integer spin → increase

<table>
<thead>
<tr>
<th>(\ell)</th>
<th>(\omega_{uni})</th>
<th>(\omega_D)</th>
<th>(\omega_{RS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.1139 (-0.0962i)</td>
<td>2.1161 (-0.0962i)</td>
<td>2.2979 (-0.0961i)</td>
</tr>
<tr>
<td>20</td>
<td>4.0398 (-0.0962i)</td>
<td>4.0410 (-0.0962i)</td>
<td>4.2276 (-0.0962i)</td>
</tr>
<tr>
<td>40</td>
<td>7.8896 (-0.0962i)</td>
<td>7.8902 (-0.0962i)</td>
<td>8.0796 (-0.0962i)</td>
</tr>
<tr>
<td>60</td>
<td>11.7389 (-0.0962i)</td>
<td>11.7393 (-0.0962i)</td>
<td>11.9297 (-0.0962i)</td>
</tr>
<tr>
<td>80</td>
<td>15.5880 (-0.0962i)</td>
<td>15.5883 (-0.0962i)</td>
<td>15.7792 (-0.0962i)</td>
</tr>
<tr>
<td>100</td>
<td>19.4371 (-0.0962i)</td>
<td>19.4374 (-0.0962i)</td>
<td>19.6286 (-0.0962i)</td>
</tr>
</tbody>
</table>
Relationship between features of the QNFs in the large-\(\ell \) limit and the Lyapunov exponent (\(\Lambda \)) for spins \(s \in \{0, 1/2, 1, 3/2, 2\} \).

\[
\begin{array}{lcl}
\Re\{\Delta \omega\} & 0.1925 \pm 0.0001 \\
\Lambda & 0.19245 \\
|\Im\{\omega\}| & 0.0962 \pm 0.0001 \\
\Lambda/2 & 0.0962 \\
\end{array}
\]

Applicable beyond spin-2!

\[
\omega_{n,\ell \to \infty} = \Omega \left(\ell + \frac{1}{2} \right) - i \Lambda \left(n + \frac{1}{2} \right)
\]

\[
\Lambda = \frac{1}{\sqrt{27}} \approx 0.19245
\]

\(\Omega = \) orbital frequency of the \(r_{\text{orb}} = 3 \) photon sphere
Dolan & Ottewill (2009)

A “new” computation method for BH QNMs through a novel ansatz based on null geodesics + expansion of the QNF in inverse powers of $L = \ell + 1/2$

$$\Phi(r) = e^{i\omega z(x)} v(r), \quad \omega = \sum_{k=-1}^{\infty} \omega_k L^{-k}$$

What are the major selling points?

- more efficient means of calculating detectable BH QNMs
- physically-motivated method
- easily extended to wavefunction computation
Scalar QNM with $L=4$

Φ

EM QNM with $L=4$

Φ

Grav QNM with $L=4$

Φ

Dirac QNM with $L=4$

Φ

Rarita-Schwinger QNM with $L=4$

Φ

- $\text{Re}(\Phi(r))$
- $\text{Im}(\Phi(r))$
Large multipolar limit: Dirac QNM wavefunction

Dirac QNM with $L = 4$

Graph showing the Dirac QNM wavefunction with $L = 4$. The graph plots the function Φ against r, with r ranging from 4 to 12. The graph shows oscillatory behavior with peaks and troughs, typical of wave functions in quantum mechanics.
Large multipolar limit: Dirac QNM wavefunction

Dirac QNM with \(L = 10 \)

\[\Phi \]

Large multipolar limit: Dirac QNM wavefunction
Large multipolar limit: Dirac QNM wavefunction

Dirac QNM with $L=20$
A highly economical method, from BH considerations

- Large-ℓ regime: physical insights, astrophysically relevant
 - s less important as ℓ grows ($\mu = 1, n = 0$)
 - behaviours in $\Re\{\omega\}$, $\Im\{\omega\}$ for fixed n, ℓ
A highly economical method, from BH considerations

- Large-ℓ regime: physical insights, astrophysically relevant
 - s less important as ℓ grows ($\mu = 1, n = 0$)
 - behaviours in $\Re\{\omega\}, \Im\{\omega\}$ for fixed n, ℓ
- DO validity in QNF computations:
 - Excellent agreement with literature + efficient
 - Possible to extend even further, beyond even RN + SdS!
 - \rightarrow brewing: higher-d BHs, AdS BHs...
Conclusions

A highly economical method, from BH considerations

- Large-ℓ regime: physical insights, astrophysically relevant
 - s less important as ℓ grows ($\mu = 1$, $n = 0$)
 - behaviours in $\Re\{\omega\}$, $\Im\{\omega\}$ for fixed n, ℓ

- DO validity in QNF computations:
 - Excellent agreement with literature + efficient
 - Possible to extend even further, beyond even RN + SdS!
 → brewing: higher-d BHs, AdS BHs...

- As for the wavefunction $\Phi(r)$:
 - Straightforward computation but few physical insights
 → need to extend beyond radial profile
 e.g. QNM excitation coefficients via residues of GF poles
Thanks!
Spherically-symmetric, d-dimensional black hole

$$ds^2 = g_{\mu\nu}dx^\mu dx^\nu = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega_{d-2}^2$$
Spherically-symmetric, d-dimensional black hole

\[ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -f(r) dt^2 + f(r)^{-1} dr^2 + r^2 d\Omega_{d-2}^2 \]

Schwarzschild BH metric function:

\[f(r) = 1 - \frac{2\mu}{r^{d-3}} \]

Event horizon ($f(r) = 0$): classically, no info may escape

\[r_H = |2\mu|^{1/(d-3)} \]
The birth of black hole perturbation theory:

\[g_{\mu\nu} dx^\mu dx^\nu = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

\[g_{\mu\nu} \rightarrow g'_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu} \quad \text{(linearised gravity)} \]
μ, θ, λ parametrise M, Q, $Λ$:

$$\mu = \frac{8\pi G_d}{(d-2) \Omega_{d-2}} M, \quad \theta^2 = \frac{8\pi G_d}{(d-2)(d-3)} Q^2, \quad \lambda = \frac{2\Lambda}{(d-1)(d-2)}$$

for the gravitational constant in d-dimensional space, G_d, and the area of a unit $(d-2)$-sphere, Ω_{d-2}.
Say we solve for the fundamental gravitational QNF of a 4D Schwarzschild BH. That is, $s = 2$, $\ell = 2$, $n = 0$. Recall: gravitational QNFs are isospectral. If we set $M = 1$,

$$\omega M \approx 0.3737 - 0.0890i$$

To convert from the Planck units we employ to kHz,

$$\omega \rightarrow \omega \times 2\pi(5.142 \text{ kHz}) \frac{M}{M_\odot}$$

For a 10 M_\odot BH, we then have

$$\nu = (1.2074 - 0.2875i) \text{ kHz}$$
Gravitational perturbations: spin-2

\[
\frac{d^2}{dx^2} \Phi(x) + \left[\omega^2 - V^{s=2}(r) \right] \Phi(x) = 0
\]

\[
\frac{dr}{dx} = f(r) = 1 - \frac{2M}{r}
\]

\(x \) maps \((rH, +\infty)\) to \((-\infty, +\infty)\)

Regge & Wheeler, 1957 (vector mode):

\[
V(r) = f(r) \left[\frac{\ell(\ell + 1)}{r^2} - \frac{6M}{r^3} \right]
\]

Zerilli, 1970 (scalar mode):

\[
V(r) = f(r) \left[\frac{2h^2(h + 1)r^3 + 6h^2Mr^2 + 18hM^2r + 18M^3}{r^3(hr + 3M)^2} \right],
\]

where \(2h = (\ell - 1)(\ell + 2)\)
Black hole wave equation:

\[
\frac{d^2}{dx^2}\Phi(x) + [\omega^2 - V(r)] \Phi(x) = 0
\]

\[
V_{\text{eff}}(r) = \frac{f(r)}{r^2} \left[\ell(\ell + 1) + \frac{2M(1 - s^2)}{r} \right]
\]

\[
s = \begin{cases}
0 , & \text{scalar} \quad \Rightarrow (1 - s^2) = 1 \\
1 , & \text{electromagnetic: vector mode} \quad \Rightarrow (1 - s^2) = 0 \\
2 , & \text{gravitational: vector mode} \quad \Rightarrow (1 - s^2) = -3 .
\end{cases}
\]
Gravitational: scalar
If we set $N = d - 2$,

$$V_S(r) = \frac{f(r)U(r)}{16r^2H(r)^2};$$

$$k_S^2 = \ell(\ell + d - 3), \quad \ell \in \mathbb{N}_0;$$

$$H(r) = k_S^2 - N + N(N + 1)\frac{\mu}{2r^{d-2}};$$

$$U(r) = -\lambda r^2 \left[N^3(N + 2)(N + 1)^2 \left(\frac{\mu}{r^{d-3}} \right)^2 - 12N^2(N + 1)(N - 2)(k_S^2 - N) \left(\frac{\mu}{r^{d-3}} \right) + 4(N - 2)(N - 4)(k_S^2 - N)^2 \right]$$

$$+ N^4(N + 1)^2 \left(\frac{\mu}{r^{d-3}} \right)^3 + N(N + 1)(1 - f)^2 \left[4(2N^2 - 3N + 4)(k_S^2 - N) + N(N - 2)(N - 4)(N + 1) \right]$$

$$- 12N(k_S^2 - N) \left(\frac{\mu}{r^{d-3}} \right) \left[(N - 4)(k_S^2 - N) + N(N + 1)(N - 2) \right] + 16(k_S^2 - N)^3 + 4N(N + 2)(k_S^2 - N)^2.$$
Test particle near BH ($\theta = \pi/2$):

$$ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega_{d-2}$$

$$\Rightarrow \mathcal{L} = \frac{1}{2}g_{\mu\nu}\dot{x}^\mu\dot{x}^\nu = \frac{1}{2}\left(-f(r)\dot{t}^2 + f(r)^{-1}\dot{r}^2 + r^2\dot{\phi}^2\right)$$

From the corresponding conjugate momenta,

$$p_t = f(r)\dot{t} \equiv E \Rightarrow \dot{t} = \frac{E}{f(r)}$$

$$p_\phi = r^2\dot{\phi} \equiv L \Rightarrow \dot{\phi} = \frac{L}{r^2}$$

$$p_r = f(r)^{-1}\dot{r}$$

$$\mathcal{H} = \left(p_t\dot{t} + p_\phi\dot{\phi} + p_r\dot{r} - \mathcal{L}\right)$$

$$\Rightarrow 2\mathcal{H} = E\dot{t} - L\dot{\phi} - f(r)^{-1}\dot{r}^2 = \delta_1$$

$\delta_1 = 1$: time-like geodesics

$\delta_1 = 0$: null geodesics
Introduce the definition: $\dot{r} \equiv V_r$

\[\Rightarrow V_r = f(r) \left[\frac{E^2}{f(r)} - \frac{L^2}{r^2} - \delta_1 \right] \]

For circular orbits: $V_r = V'_r = 0$

\[\Rightarrow 0 = f(r) \left[\frac{E^2}{f(r)} - \frac{L^2}{r^2} - 0 \right] \]

Thus, D & O define

\[k_c(r) = \sqrt{\frac{E^2}{L^2} - \frac{f(r)}{r^2}} \quad \text{,} \quad b(r) = \frac{L}{E} \]

\[k_c(r) \bigg|_{b_c, r_c} = 0 \]

\[\Rightarrow b_c(r) = \sqrt{\frac{r^2}{f(r)}} \bigg|_{r_c} \quad \text{,} \quad r_c = \frac{2f(r_c)}{\partial_r f(r_c)} \]

DO origins
Efficient + economical method
⇒ highly consistent with 6th-order WKB

Observations:

- pronounced similarity from \(\ell = 10 \) (\(\mu = 1 \), \(n = 0 \))
- spin irrelevant for large angular dependence
- \(\Lambda \) suppresses, \(\theta \) enhances QNF growth
- confirms behaviour noted at lower \(\ell \) in literature:
 - Shu & Shen:
 - \(\Re \{ \omega \} \) ↓ with \(s \) for fixed \(n \) and \(\ell \)
 - \(\Re \{ \omega \} \) halfint ↑ with \(s \) for fixed \(n \) and \(\ell \)
- \(\Im \{ \omega \} \sim 0.0962 \) yields the correct value for Schwarz

New results:

- higher orders (\(O(\ell - 6) > O(\ell - 2) \))
- some new int. + all new half-int. expressions
- new behaviours noted in large-\(\ell \) regime

Observations
Observations

- Efficient + economical method
 ⇒ highly consistent with 6^{th}-order WKB

- Observations:
 ⇒ pronounced similarity from $\ell = 10$ ($\mu = 1$, $n = 0$)
 ⇒ spin irrelevant for large angular dependence
 ⇒ Λ suppresses, θ enhances QNF growth

- New results:
 ⇒ higher orders ($O(L-6) > O(L-2)$)
 ⇒ some new int. + all new half-int. expressions
 ⇒ new behaviours noted in large-ℓ regime
Observations

- Efficient + economical method
 ⇒ highly consistent with 6th-order WKB
- Observations:
 ⇒ pronounced similarity from \(\ell = 10 \) (\(\mu = 1, n = 0 \))
 ⇒ spin irrelevant for large angular dependence
 ⇒ \(\Lambda \) suppresses, \(\theta \) enhances QNF growth
- Confirms behaviour noted at lower \(\ell \) in literature:
 ⇒ Shu & Shen: \(\Re \{\omega\}_{\text{int}} \downarrow \) with \(s \) for fixed \(n \) and \(\ell \)
 ⇒ Shu & Shen: \(\Re \{\omega\}_{\text{half int}} \uparrow \) with \(s \) for fixed \(n \) and \(\ell \)
 ⇒ \(\Im \{\omega\} \sim 0.0962 \) yields the correct value for Schwarz \(\overline{\Lambda} \)
Observations

• Efficient + economical method
 ⇒ highly consistent with 6^{th}-order WKB

• Observations:
 ⇒ pronounced similarity from $\ell = 10$ ($\mu = 1$, $n = 0$)
 ⇒ spin irrelevant for large angular dependence
 ⇒ Λ suppresses, θ enhances QNF growth

• Confirms behaviour noted at lower ℓ in literature:
 ⇒ Shu & Shen: $\Re\{\omega\}_{\text{int}} \downarrow$ with s for fixed n and ℓ
 ⇒ Shu & Shen: $\Re\{\omega\}_{\text{half int}} \uparrow$ with s for fixed n and ℓ
 ⇒ $\Im\{\omega\} \sim 0.0962$ yields the correct value for Schwarz $\overline{\Lambda}$

• New results:
 ⇒ higher orders ($\mathcal{O}(L^{-6}) > \mathcal{O}(L^{-2})$)
 ⇒ some new int. + all new half-int. QNF expressions
 ⇒ some new int. + all new half-int. QNM wavefunctions
 ⇒ new behaviours noted in large-ℓ regime