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Why solid oxide fuel cells (SOFCs)?

Science. 2011, 334 (6058), 935–939.

High specific energy, specific power and power 

density → outperforms any other system currently 

available

1

The search for cleaner energy
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• Electrochemical energy conversion devices

• Converts chemical energy from a fuel (e.g. hydrogen, biomass, 

methane and other hydrocarbons, natural gas and coal) directly 

into electrical energy (NO combustion)

Do not require combustion as an intermediate step →

higher fuel conversion efficiencies compared to 

combustion-based processes → can produce a given 

amount of energy using less fuel  have lower CO2

emissions and is more environmentally friendly 

Nissan e-Bio Fuel 

Cell:

 5 L/100 km

(bioethanol)

Nissan NV200 

Combi: 

9.8 L/100km

(petrol)

https://global.nissannews.com/en/releases/nissan-unveils-worlds-first-solid-

oxide-fuel-cell-vehicle?source=nng&lang=en-US
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Structure of -Bi2O3

• defect fluorite (FCC) structure

• CCP array of Bi3+ cations (blue) with oxide ions (red) in 

tetrahedral holes (25% of normal anion sites are vacant 

without any doping)

• oxide ions undergo thermal vibrations and 

periodically hop to adjacent sites

• neutron diffraction reveals an even more complicated 

disorder of the oxide ion sub-lattice with oxide ions 

occupying interstitial sites

J. Mater. Sci. 1994, 29, 4135.

J. Eur. Ceram. Soc. 1999, 19, 1801.

Solid State Ionics 1996, 89, 179.
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The Y3+ and Sc3+ co-doped system
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J. Power Sources 2012, 218, 106

([Sc] [Y]) Lattice parameter and ionic conductivity 

INCREASES

Sc

Why does this happen?

We don’t know!

Insufficient structural 

investigation to determine  a 

mechanism for lattice  

expansion

Sc2+ DOES NOT EXIST

Used a high total dopant 

concentration (24 mol%)

Suggested that the  lattice 

expansion might  be caused by 

Sc3+  → Sc2+
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Aims and objectives
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Co-dope Bi2O3 with Y3+ and Sc3+ at a lower total dopant concentration (20 mol%)

Provide more in-depth structural characterisation to determine the mechanism of lattice 

expansion
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** * * * *

~7 wt%

Atmospheric CO2 reacts with the material to form Bi2(CO3)O2
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Persistent throughout heating (30 °C to 780 

°C) and cooling (780 °C to 30 °C)

Variable temperature laboratory powder X-ray 

diffraction (not aged)
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Simultaneous Thermal Analysis (STA) [DTA+TGA] of 

7 months aged materials

Solid State Ionics 1996, 89, 179.14
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Atmospheric CO2 reacts with the material to form Bi2(CO3)O2 over time

Bi2(CO3)O2 phase is not persistent as CO2 can be removed by heating to ~450 °C

STA suggested a reversible order-disorder transition of the oxide ion sublattice 
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structure down to room temperature
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Variable temperature powder X-ray diffraction of aged materials
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