

illuminating x-ray science™

The Lyncean Compact Light Source

A Stepping Stone to a Large Synchrotron Facility

Challenges to Building a Synchrotron

- Once a commitment has been made, it can take 10 to 20 years to build a synchrotron facility
- Design, development and construction costs can range from \$0.5B to >\$1B
- Operating costs can be in the \$10s M annually
- It takes highly skilled and diverse experts to design and build a synchrotron — accelerator physicists, optical physicists, beamline scientists, and specialized engineers and technicians
- Skilled operators and users are required to be productive and generate scientifically relevant research

How the Compact Light Source can be a Stepping Stone Towards Building a Synchrotron Facility

- 1. Lyncean's Compact Light Source mini-Synchrotron
- 2. A Synchrotron Quality, Multi-Disciplined X-ray Facility

The Lyncean Compact Light Source (CLS)

- Synchrotrons are the "super computers" of X-ray science
- They require high energy storage rings that are large and expensive (scale \$1B)
- Access can be difficult as most are over subscribed by 2x to 3x

Lyncean Compact Light Source

Advanced Photon Source

- The CLS provides similar functionality as synchrotron bend magnet beam lines
- The CLS is much smaller & much lower cost making it the "workstation" of X-ray science

How to shrink a synchrotron by 100X And still make hard x-rays

	Synchrotron
Storage Ring Dia	~60-300 m
Electron Energy	2-5 GeV
Undulator Period	~ 10 mm
Undulator Type	Permanent Magnet

How to shrink a synchrotron by 100X And still make hard x-rays

	Synchrotron		Compact Light Source
Storage Ring Dia	~60-300 m	~100X	~1 m
Electron Energy	2-5 GeV		
Undulator Period	~ 10 mm		
Undulator Type	Permanent Magnet		

- Shrinking size by 100X means reducing the bend radius of electrons accordingly
- Fixed bend magnet strength (~1Tesla)
 - \rightarrow Bend radius proportional to E
 - \rightarrow Need to reduce electron energy by 100X

How to shrink a synchrotron by 100X And still make hard x-rays

	Synchrotron		Compact Light Source
Storage Ring Dia	~60-300 m	~100X	~1 m
Electron Energy	2-5 GeV		25-45 MeV
Undulator Period	~ 10 mm		
Undulator Type	Permanent Magnet		

- Shrinking size by 100X means reducing the bend radius of electrons accordingly
- Fixed bend magnet strength (~1Tesla)
 → Bend radius proportional to E
 → Need to reduce electron energy by 100X
- Bend magnet emission X-ray \rightarrow IR

How to shrink a synchrotron by 100X And still make hard x-rays

	Synchrotron		Compact Light Source
Storage Ring Dia	~60-300 m	~100X	~1 m
Electron Energy	2-5 GeV		25-45 MeV
Undulator Period	~ 10 mm		
Undulator Type	Permanent Magnet		

• X-ray generation requires undulator with ultra-short period (10,000X smaller)

How to shrink a synchrotron by 100X And still make hard x-rays

	Synchrotron		Compact Light Source
Storage Ring Dia	~60-300 m	~100X	~1 m
Electron Energy	2-5 GeV		25-45 MeV
Undulator Period	~ 10 mm	~10,000X	~ 0.5 μm
Undulator Type	Permanent Magnet		Laser Field (1 μ m λ)

$$\lambda_{\rm undulator} \qquad \qquad \lambda_{\rm x-ray} = \frac{\lambda_{\rm undulator}}{2\gamma^2} \propto \frac{\lambda_{\rm undulator}}{E^2}$$

• X-ray generation requires undulator with ultra-short period (10,000X smaller)

How To Produce High Flux with a 1m Ring

$$\dot{\mathbf{V}}_x = \sigma_{Th} \cdot \mathcal{L}_0$$

 $\dot{\mathbf{N}}_z$ = X-ray flux (ph/s):
 $\sigma_{Th} = \frac{8\pi}{3} r_e^2 = 6.65 \times 10^{-29} \,\mathrm{m}^2$

Need high Luminosity:

$$\mathcal{L}_0 = f_{\text{coll}} \frac{N_l N_e}{4\pi \sigma_r^2}$$

$$\sigma_r^2 = \frac{1}{2}\sqrt{\sigma_{e,x}^2 + \sigma_{e,y}^2}\sqrt{\sigma_{l,x}^2 + \sigma_{l,y}^2} = \sigma_e \sigma_l$$

Optimizing CW x-ray output by

- \rightarrow **f**_{coll}: maximize collision frequency electron storage ring for 65 MHz rate
- $\rightarrow N_I$: maximize laser pulse power high finesse, power amplifying laser cavity
- $\rightarrow N_e$: maximize electron bunch charge high charge, low emittance LINAC
- $\rightarrow \sigma_r$: minimize source size optimize size of e-beam and laser waist

adapted from Schleede et al., J. Sync. Rad. 19, 525 (2012)

The Compact Light Source

- A miniature synchrotron x-ray source
 - Electron bunch stored in a miniature electron storage ring
 - Picosecond laser pulse stored in high-finesse optical cavity providing electron "undulation" to produce x-rays in interaction region

The Compact Light Source Animation

Red pulse = CW mode-locked laser pulse resonantly driving an optical cavity (shown here as a 2-mirror Fabry-Perot).

Green pulse = electron beam injected and then circulating in storage ring.

Purple pulse = X-rays generated at the collision point (IP) and exiting to right.

The Compact Light Source CAD Drawing

The Munich Compact Light Source

Energy Spectrum and Tunability

- "Undulator" monochromatic spectrum with 3-6% FWHM Bandwidth
- Peak energy tuned by changing e-beam energy in storage ring

CLS X-ray Source Parameters

Parameter	CLS 1.1 (Munich CLS)	CLS 2.0 (Next system)	CLS Roadmap (Future)
Total Flux (~4% BW) – [ph/s]	>3 * 10 ¹⁰	4 * 10 ¹¹	4 * 10 ¹²
Source size [µm rms]	45	40	30
Source divergence [mrad] (Flattop Cone)	4	6	6
Source Brightness – Full Bandwidth [ph/s/mrad^2/mm^2/4% BW]	5 * 10 ¹¹	4 * 10 ¹²	1 * 10 ¹⁴
Tunable x-ray energy range [keV]	8-35 (IR 1um laser)	8-35 (IR 1um laser)	4-22 (IR – 2um) 8-40 (IR – 1um) 16-80 (Vis – 0.5um)
X-ray energy bandwidth [dE/E FWHM]	3-5%	3-5%	2-4%
X-ray Pulse Length (rms) [ps]	60		
X-ray Repetition Rate [MHz]	65		

Characterization of Munich CLS: Eggl et al., J. Sync. Rad. 23 (5), Sept. 2016

• Future developments to

- Extend energy range coverage from 4keV to 80keV
- Match or exceed synchrotron bend performance even for crystal monochromator measurements

How the Compact Light Source can be a Stepping Stone Towards Building a Synchrotron Facility

- 1. Lyncean's Compact Light Source mini-Synchrotron
- 2. A Synchrotron Quality, Multi-Disciplined X-ray Facility

Lyncean Compact Light Source Facility Layout

A Multi-Disciplined X-ray Facility Layout

Protein Crystallography 20 minute acquisition 1.7 Å reconstruction resolution

Micro & Nano Tomography

ZEISS Xradia Ultra Synchrotron Microscope

Powder Diffraction

20 ppm contamination detection

End-station close to source

Compact X-ray Station (CXS)

A Multi-Disciplined X-ray Facility Layout

Fluorescence Mapping

31.6 Mpixel scanning Energy tunability to avoid Pb interference

Australian Synchrotron Thurrowgood, D. *et al.* A Hidden Portrait by Edgar Degas. *Sci. Rep.* **6**, 29594 (2016).

ED-XAFS Conceptual design >70 elements accessible using K & L3-edge for the standard CLS energy

End-station close to source

Compact X-ray Station (CXS)

A Multi-Disciplined X-ray Facility Layout

A Multi-Discipline X-ray Facility Layout

End-station far from source

Large Sample Imaging No beam hardening artifacts Elemental contrast using absorption edges Dynamic experiments for activity in the ms timescale

Phase Contrast Imaging Propagation phase contrast Grating based phase contrast

Lyncean Technologies Confidential

Compact X-ray Station (CXS)

The Lyncean Compact Light Source

A Stepping Stone Towards a Large Synchrotron Facility

- A CLS provides substantial synchrotron capabilities, turn-key ready, at a moderate cost
- It is available and operating within a short timeframe (1-2 years)
- It attracts and enable training of accelerator resources required for designing and constructing a large synchrotron
- It avoids brain-drain by providing local talent a working machine to conduct research in Xray diffraction, spectroscopy, scattering and imaging instead of moving elsewhere
- It allows training of user and beamline scientists in X-ray techniques and operations
- End-stations can be developed in preparation for installation at a beamline
- It reduces the risk and possibly cost for the synchrotron project by providing early handson access to a working machine promoting faster learning

illuminating X-ray science