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Abstract. We compute for the first time the suppression of bottomonia in a strongly coupled
QGP and compare the results to those from a weakly coupled QGP and to data. Using imaginary
time techniques we numerically determine the real and imaginary parts of the binding energy of
ground state bottomonia in a potential computed from AdS/CFT and another computed from
pQCD. We implement the complex binding energies in a suppression model to determine the
Υ(1S) nuclear modification factor in

√
sNN = 2.76 TeV Pb+Pb collisions. This simplest strong-

coupling, pT -independent potential leads to a significant oversuppression of Υ(1S) compared to
data while the results from the pQCD-derived potential are consistent with data. We also
investigate the validity of using complex heavy quark potentials from AdS/CFT for all quark
separation r by independently computing the meson spectrum using semiclassical, rotating open
strings attached to the D7-brane.

1. Introduction
The relativistic heavy-ion collisions at the Large Hadron Collider (LHC) and the Relativistic
Heavy Ion Collider (RHIC) are sufficiently energetic for hadrons to transition into a new phase of
colored matter, known as the quark-gluon plasma (QGP) [1]. In vacuum, quarkonia are bound
states of a heavy quark and its anti-quark pair [2]. Embedded in a medium, the properties of
quarkonia change. Matsui and Satz [3] were the first to propose that quarkonia may theoretically
exist in conjunction with the QGP at T > Tc, where Tc is the critical temperature required for
QGP formation, due to its small binding radii relative to the screening radius, whereas lighter
hadrons dissociate at ∼ Tc. At some T , the screening radius becomes smaller than the typical
quarkonia radii, leading to their dissolution. In addition, excited states of quarkonia dissociate
before the ground state [4]. The suppression of the bound states of quarkonia in heavy-ion
collisions is hence a valuable indicator of the formation of QGP, and the comparison of the
quarkonia spectra in high multiplicity collisions to that in minimum bias p+ p collisions where
no QGP is formed is a useful probe of the QGP’s properties.

Potential models can be used to describe the interaction of the quark and antiquark in the
qq̄ pair to calculate the suppression of quarkonia production in heavy-ion collisions [3]. This
potential at finite temperature contains not only a standard real Debye-screened term, but also
an imaginary part which gives the thermal width of the state, and hence its suppression [5].
One of the first to show this was [6], which made use of perturbative methods to find the static
potential of quarkonia at finite temperature. They concluded that the thermal width of the



state increases with T , suggesting that at high T the dissociation due to the effect described by
the imaginary part of the potential occurs before color screening can even come into effect.

The complex-valued potential was explored further using non-perturbative lattice QCD by
[5], among others, allowing for the study of strongly-coupled quarkonia as well. An important
consideration in finding heavy quarkonium suppression is the velocity of the qq̄ in relation to the
surrounding QGP, however, while perturbative and lattice QCD calculations generally consider
the qq̄ meson to be at rest in the medium.

The suppression of quarkonia moving at velocity in a QGP hence requires holographic
techniques such as the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. Liu,
Rajagopal and Wiedemann (LRW) [7] were the first to present a quantitative description from
AdS/CFT of the consequences of velocity on the screening length of charmonium, suggesting that
for strongly coupled J/ψ, velocity could result in a significant additional source of suppression
at high transverse momentum pT in the form of a decrease in dissociation energy with increased
velocity. Since then, many have performed similar investigations, and while the aforementioned
are limited in their scope of application, it is interesting to note that [8] in particular concludes
that the effect of velocity may not be as consequential as postulated in LRW.

We would ultimately like to investigate the consequences of these different velocity dependence
pictures from AdS/CFT compared to pQCD. Here we have a more modest goal: to compare the
experimentally measurable consequences of pQCD vs. AdS/CFT pictures.

2. Potential Models
The potential model for weakly coupled quarkonia is taken from [9]. We plot the real and
imaginary parts of the weakly coupled potential as a function of quark separation r for various
temperatures in figures 1a and 1b, respectively.
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Figure 1. Plot of the (a) real part and the (b) imaginary part of the weakly coupled potential,
as a function of the distance r between the quark and anti-quark in the bb̄, for various T .

We modeled the strongly coupled quarkonia at rest in a QGP with the potential given in
Albacete et al. [10], which was derived in N = 4 super Yang-Mills at finite temperature using
AdS/CFT. Note that the potential becomes complex for r > rc ' 0.870/πT . Considering that
both weakly coupled pQCD and non-perturbative lattice QCD methods yield complex heavy
quark potentials, it is sensible to expect the same using AdS/CFT methods. We provide further
supporting evidence for our procedure in Section 4, which gives an independent calculation of the
binding energies for Υ(1S) using semiclassical, rotating open strings attached to the D7-brane.

Figure 2a and 2b show the real and imaginary parts of the strongly coupled potential as a
function of quark separation r taking λ = 10.
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Figure 2. The (a) real part and the (b) imaginary part of the strongly coupled potential, as a
function of the distance r between the quark and anti-quark in the bb̄, for various temperatures T .
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Figure 3. The (a) negative real part and (b) negative imaginary part of Ebind for Υ(1S). The
dashed white curves inside the blue and green curves are from the independent evaluation using
the complex variational method.

3. Binding Energies
The imaginary time numerical method used to calculate the binding energies from the potential
models given in Section 2 follows that of [9, 11], with modifications (see [12] for details). Figure 3a
gives the real part of the binding energy of Υ(1S) from the pQCD potential and AdS/CFT
potential, as a function of temperature. Figure 3b gives the imaginary part of Ebind.

For the AdS/CFT results, we show the binding energy both for the case where the coupling
constant is λ = 10 (labeled as αs = 0.27) and where λ = 5.5; the reasoning behind the choice
of these values is explained in [12]. The binding energy results for bottomonium from [11] are
labeled “pQCD (KRS)” and are included for comparison.

Both the binding energy results presented for the pQCD potential and the AdS/CFT
potential taking λ = 10 were independently confirmed using a complex variational method;
see Appendix A of [12] for details.

The binding energy found from our adapted methodology for the pQCD potential differs
quantitatively from that presented in [11], which was used in Krouppa et al. [9] to calculate
suppression. In the case of Υ(1S), this difference does not change the qualitative behavior of the
quarkonia, since both results suggest that the quarkonia remain bound up to at least T = 3Tc.



However, we will see in Section 5 that the small quantitative differences in the derived binding
energies lead to a significant quantitative difference in the predicted suppression.

4. Comparison to an Independent Alternative Method: Hanging, Rotating Strings
We seek an independent confirmation of the binding energies given in Section 3 computed using
the non-relativistic imaginary time numerical method [12], using the potential from AdS/CFT
as given in figure 2.

Kruczenski et al. [13] computes the energy spectrum of mesons at T = 0 from semiclassical,
rotating open strings attached to a D7-brane. In particular, in the limit J �

√
λ, where J is

the spin, [13] notes that the spectrum corresponds to that of a non-relativistic qq̄-pair bound by
a Coulomb potential. We extended the results from [13] to T > 0. In addition, we generalized
the complex strongly coupled potential from Albacete et al. [10], which was derived in the
infinite mass limit, to finite mass. We then compared the binding energies found using this
generalized finite mass potential with the non-relativistic numerical regime (NRQM) with the
binding energies from the semiclassical string method (SSM).

For the simplest T = 0 case, both the binding energies from the SSM and NRQM are purely
real. These binding energies are shown in figure 4a for a range of quark masses. The binding
energies from the two methods agree for large J . At small J , however, ENRQM

bind > ESSM
bind .
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Figure 4. (a) The binding energies from NRQM and SSM for a range of quark masses mQ. (b)
The average potential 〈V 〉NRQM from NRQM and 〈V 〉SSM from the SSM for mQ = 4.7 GeV.

This discrepancy occurs since the imaginary time numerical method takes into account
quantum spreading of the wavefunction, whereas the SSM does not. We may explicitly
demonstrate the effect of this quantum spreading by investigating the potential probed by the
two methods. We show in figure 4b the average potential felt by the heavy quarks in the two
methods. It is evident from figure 4b that 〈V 〉NRQM > 〈V 〉SSM: the average potential experienced
by the heavy quarks is deeper at small J for the SSM as opposed to NRQM. We may understand
the ordering of potentials from the quantum spreading – the NRQM wavefunction preferentially
explores the potential at larger r due to uncertainty. As a result, the binding energies are
therefore less negative when quantum effects are taken into account, i.e. the quarkonia is less
strongly bound, as expected.

Figure 5a and 5b show the real and imaginary parts, respectively, of the binding energies
from NRQM and the SSM for Υ(1S) for a range of temperatures. At small J , the real part of
the NRQM binding energy is slightly larger than the real part of the binding energy from the
SSM, as was the case for T = 0.
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Figure 5. The (a) real and (b) imaginary parts of Ebind of Υ(1S) for a range of T .

The imaginary part of the Ebind echo the conclusions drawn regarding the difference in the
real parts. The binding energies from NRQM become complex at smaller J than those from
the SSM. The larger the imaginary part of the binding energy, the greater the tendency for the
quarkonia to fall apart: the Υ(1S) in the NRQM picture is again less tightly bound than SSM.

For large J , however, the binding energies converge as expected. The excellent agreement of
these binding energies shows that the use of complex heavy quark potentials to compute binding
energies is consistent with the independent semiclassical string method.

5. Suppression
We would lastly like to make quantitative predictions for the suppression of bottomonia in heavy
ion collisions and compare to measured data. The nuclear modification factor RAA is calculated
following [9] – see [12] for details.

Figure 6a gives the nuclear modification factor RAA for each of the sets of binding energies
shown in figure 3a and 3b as a function of the number of participating nucleons Npart. Figure 6b
shows RAA(pT ), where all centrality classes are included, weighed by the number of binary
nucleon-nucleon collisions Ncoll. Suppression results for mid-rapidity (|y| < 2.4) Pb+Pb
collisions at

√
sNN = 2.76 TeV from the CMS Collaboration [14] are included in figure 6a

and 6b for comparison.
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Figure 6. (a) Nuclear modification factor RAA as a function of the number of participating
nucleons Npart for 0 ≤ pT ≤ 40. (b) Nuclear modification factor RAA as a function of transverse
momentum pT for combined centrality classes. Data from CMS [14] is included in orange.



6. Discussion and Outlook
We present the suppression of Υ(1S) computed for the first time in an isotropic strongly coupled
QGP, compare the results to those from a weakly coupled QGP, and to data [14].

Our first results for Υ(1S) strongly coupled to a strongly coupled plasma show binding
energies with much larger imaginary parts than those found from the pQCD potential, as well
as real parts that become positive within the Tc to 3Tc range considered. Thus, for the potential
models considered here, a strongly coupled Υ(1S) interacting with a strongly coupled plasma
melts at a lower temperature than a weakly coupled Υ(1S) interacting with a weakly coupled
plasma. The Υ(1S) hence appears more strongly bound at weak coupling than at strong coupling,
which is surprising.

Quantitatively, our full model—comprised of the potential, the resulting quarkonia Ebind,
and the translation to RAA—significantly overpredicts the suppression of strongly coupled Υ(1S)
compared to data. Our predictions for weakly coupled Υ(1S) are consistent with data.

We note that our model for the medium is significantly less sophisticated compared to that
used in [9]: our background is an optical Glauber model as opposed to the 3+1D viscous
anisotropic hydrodynamics in that work. Our medium incorporates only Bjorken expansion,
whereas the background in [9] includes transverse expansion and entropy production. Therefore
the plasma in [9] cools faster than ours, leading to our model showing more dissociation for
the same binding energies. The extent of the sensitivity of RAA to the background used is
surprisingly large. With the only difference being the background geometry used, we ran the
binding energies from [11] through our suppression model and found an RAA a factor of two
smaller than that shown in [9].

In contrast to the favorable comparison between the pQCD-based results of [9] and the CMS
data [14], if we assume our weak coupling binding energies are more accurate than those of
[11], then computing RAA with the more sophisticated background from [9] would likely yield a
significant underprediction of the suppression of bottomonia.

At strong coupling, with a potential derived from AdS/CFT as described in [10], it seems
unlikely that the use of a more sophisticated background would reduce the suppression of
bottomonia enough that the predicted RAA would be consistent with data; however, the
differences from using a more sophisticated background, suppression model, and velocity
dependent potential may ultimately be sufficient for future strongly coupled quarkonia
predictions to be consistent with current data.
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