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Abstract. In this contribution orthonormal sinc basis function are used to numerically solve
the Schrödinger equation in one and two dimensions for a number of potentials. The calculations
are done using Python and the numpy module. The convergence is found to be quick and, for the
Morse potential, also agrees with the theoreticallly expected behaviour. In the two dimensional
case code optimizations lead to a large speed-up.

1. Introduction
Sinc functions as a basis set have been used extensively for obtaining the approximate solutions
of ordinary differential equations, partial differential equations and integral equations [1, 2]. The
sinc numerical method is easily implemented and the results obtained are of good accuracy [3, 4].
It has been shown that sinc numerical methods are distinguished by exponentially decaying errors

[5, 6]; they have convergence rates of O
(

exp
(
−k
√
N
))

with some k > 0, [7], where N is the

number of nodes or basis functions used.
In this contribution the numerical solution of the Schrödinger equation for a variety of potentials
in both one and two dimensions is demonstrated using the scripting languange Python[8] together
with the module numpy[9].

2. Solving the one dimensional Schrödinger equation using Sinc Basis Functions
The normalized sinc function is on the line −∞ < x <∞ defined by

sinc(x) =
sin(πx)

πx
,

∞∫
−∞

sinc(x)dx = 1. (1)

The zeroes of this function are all integer values of x. An orthonormal set of functions can be
obtained from the sinc function by shifting it by all positive and negative integers. In order to
make this basis set also suitable for the expansion of quickly varying functions, we define the
basis functions, also introducing a stretching parameter h, as

si(x) =
1√
h

sin(π(xh − i))
π(xh − i)

. (2)



Here h is the distance between subsequent zeroes of these basis functions, i is the index running
in principle over all integer values from −∞ to ∞ and the first factor on the right hand side
provides for normalization.
We now restrict i to the interval [−n, n] and define the basis functions for numerical calculations
by

fj(x) = s−n+j−1(x), (3)

with j = 1, 2, ....2n+ 1 . This is a orthonormal basis of dimension N = 2n+ 1. Choosing n and
h is equivalent to a cut-off at xmax = nh. This fixes the boundary conditions and determines
the accuracy.
Thus the ansatz for the solution of the Schrödinger equation is given by

ψ(x) =
N∑
i=1

cifi(x) . (4)

The Schrödinger equation {
− d2

dx2
+ V (x)

}
ψν(x) = eνψν(x) (5)

is now solved via the variational method, leading to the eigenvalue problem

Huν = eνuν (6)

with
hij = kij + vij , (7)

kij =

∫
f ′i(x)f ′j(x)dx =

{
π2

3h2
i = j;

(−1)|i−j| 1
h2

2
|i−j|2 i 6= j.

(8)

and

vij =

∫ xmax

−xmax

fi(x)V (x)fj(x)dx . (9)

The analytic expression for the kinetic energy matrix elements has been obtained by using the
Fourier expansion of the sinc function and the Parseval theorem. The potential matrix was
evaluated by repeated Gauss-Legendre integration, where the intervals are coinciding with the
intervals between subsequent zeroes of the sinc basis functions. For this integration we used
NGL = 10 points and weights in each interval, resulting in a total number of Integration points
of 20n.

3. Numerical Results for one Dimension
3.1. Numerical calculations for the one dimensional harmonic oscillator
For verification purposes we first considered the harmonic oscillator. The energy eigenvalues of
the quantum harmonic oscillator with the Hamiltonian

H = − d2

dx2
+ x2 (10)

are
Eν = 2ν + 1 , (11)

i.e. all odd numbers 1, 3, 5, 7,· · · .
Employing Python and numpy, and using the sinc basis functions for xmax = 8, the results of
the numerical calculations obtained are shown in table 1, and the lowest eigenvalues 1, 3, 5, 7 are
obtained very accurately. The calculations were done for nh = xmax = 8. Convergence is seen
to be rather quick as function of n.



Table 1. Results of numerical calculations for harmonic oscillator
n h E0 E1 E2 E3

8 1.0 1.00013274618 3.00388708934 5.01965658349 7.1426916954
9 0.8889 1.00001043728 3.00040366538 5.00262094231 7.026576271
10 0.8 1.00000059941 3.00002946274 5.00023921435 7.00326643666
11 0.7273 1.00000002524 3.00000153079 5.00001518651 7.00026666304
12 0.6667 1.00000000078 3.00000005692 5.00000067774 7.00001475924
13 0.6154 1.00000000002 3.00000000152 5.00000002142 7.00000056346
14 0.5714 1.0 3.00000000003 5.00000000048 7.000000015
15 0.5333 1.0 3.0 5.00000000001 7.00000000028
16 0.5 1.0 3.0 5.0 7.0

3.2. Numerical calculations for Morse potential
The Morse potential has been used to model the vibrational excitations of a chemical bond for
diatomic molecules. The potential is in this model given by[10]

VMorse(x) = D(e−2x/a − 2e−x/a). (12)

i.e. the Hamiltonian becomes

H = − 1

2µ

d2

dx2
+D(e−2x/a − 2e−x/a) (13)

and, for µ = 1/2 and a =1, the eigenvalues are given by[10]

Eν = −D
{

1− 1√
D

(
ν +

1

2

)}2

(14)

with ν restricted by the condition, that the contents of the curly bracket must be positive.
Employing the Python code for the sinc basis function for D = 9 and xmax = 15, the results as
shown in table 2 are obtained.

From the theoretical convergence studies [7] we expect the following to hold for the ν-th

Table 2. Results of numerical calculations for Morse potential
n h E0 E1 E2

10 1.5 -3.76039 -0.25006 0.07333
15 1.0 -5.61145 -1.35904 0.00106
16 0.9375 -5.78207 -1.54867 -0.02423
17 0.88235 -5.91164 -1.70946 -0.05513
18 0.83333 -6.00860 -1.84134 -0.08795
19 0.78947 -6.08010 -1.94651 -0.11947
20 0.75 -6.13196 -2.02827 -0.14810
22 0.68182 -6.19503 -2.13663 -0.19210
25 0.6 -6.23361 -2.21183 -0.22830
27 0.55555 -6.24283 -2.23225 -0.23947
30 0.5 -6.24798 -2.24473 -0.24679

eigenvalue resulting from the calculations as function of N :

Eν(N) = Eν + bν exp(−cν
√
N) . (15)

Gnuplot was used both for creating the figures as well as fitting the results to the expected
convergence behaviour. From figure 1 and figure 2 it is evident, that the eigenvalues agree
reasonably well with the fits to equation (15).
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Figure 1. Convergence for ground state of Morse potential
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Figure 2. Convergence for first excited state of Morse potential

4. Solving the two dimensional Schrödinger equation
The two dimensional Schrödinger equation was solved numerically by expanding the wave
function ψ(x, y) in terms of products of one dimensional basis functions, i.e.

ψ(x, y) =
∑

cαfiα(x)fjα(y) , (16)

where iα and jα are suitably defined functions of α. Thus the basis functions used in x and y
are indentical, the domain of expansion is [−xmax, xmax]× [−xmax, xmax], and the total number
of basis functions becomes N2.
In two dimensions the Hamiltonian is given by

H = − ∂2

∂x2
− ∂2

∂y2
+ V (x, y) . (17)



Evaluation of the matrix elements hαβ then proceeds analytically for the kinetic energy term
and numerically for the potential energy term in a simliar fashion as in one dimension. It should
be be noted, that the numerical integration requires much more CPU time, since there are now
4n2N2

GL integration points.

5. Numerical Results for two Dimensions
5.1. Results for two dimensional harmonic oscillator
Numerical Calculations were done for nh = xmax = ymax = 8 and NGL = 10 and the results are
given in table 3

Table 3. Results of Numerical Calculations for 2-D Harmonic Oscillator
n h E0 E1 E2 E3 E4 E5

7 1.1429 2.002428 4.027192 4.027192 6.051474 6.099747 6.100884
8 1.0 2.000262 4.003994 4.003994 6.007651 6.019370 6.019519
9 0.8889 2.000021 4.000412 4.000412 6.000794 6.002584 6.002597
10 0.8 2.000001 4.000030 4.000030 6.000058 6.000236 6.000237
11 0.7273 2.000000 4.000002 4.000002 6.000003 6.000015 6.000015
12 0.6667 2. 4.000000 4.000000 6.000000 6.000000 6.000000
13 0.6154 2. 4. 4. 6. 6.000000 6.000000
14 0.5714 2. 4. 4. 6. 6. 6.
15 0.5333 2. 4. 4. 6. 6. 6.

Table 4. Parameters of Numerical Calculations for Harmonic Oscillator for NGL = 10
n h NEVP Nint TEval.ofB.F. TEval.ofvmat TEVP

7 1.1429 225 19600 18.5929 1.4714 0.1197
8 1.0 289 25600 31.1685 3.1726 0.1915
9 0.8889 361 32400 48.4563 6.2601 0.3513
10 0.8 441 40000 73.5441 11.5954 0.6294
11 0.7273 529 48400 109.2896 20.1906 1.0501
12 0.6667 625 57600 154.8675 33.5829 1.7290
13 0.6154 729 67600 211.3824 53.5678 2.6635
14 0.5714 841 78400 279.7736 82.5839 3.9894
15 0.5333 961 90000 389.9374 123.8101 5.9517

Table 5. Results of Numerical Calculations for HO for NGL = 10 with code optimization
n h NEVP Nint TEval.ofB.F. TEval.ofvmat TEVP

7 1.1429 225 19600 0.1613 1.4806 0.0969
8 1.0 289 25600 0.2341 3.1731 0.1933
9 0.8889 361 32400 0.3343 6.2837 0.3545
10 0.8 441 40000 0.4597 11.5784 0.6382
11 0.7273 529 48400 0.6081 20.1427 1.0403
12 0.6667 625 57600 0.8030 33.3005 1.6976
13 0.6154 729 67600 1.0367 53.4464 2.6106 .
14 0.5714 841 78400 1.3088 82.2574 3.9483
15 0.5333 961 90000 1.6377 122.7418 5.8455

Table 6. Results of Numerical Calculations for HO for NGL = 4 with code optimization
n h NEVP Nint TEval.ofB.F. TEval.ofvmat TEVP E0 E1 E2 E3

7 1.1429 225 3136 0.0626 0.2395 0.0954 2.002419 4.027176 4.027176 6.051453
8 1.0 289 4096 0.0934 0.5131 0.1923 2.000261 4.003997 4.003997 6.007657
9 0.8889 361 5184 0.1260 1.0041 0.3553 2.000021 4.000412 4.000412 6.000795
10 0.8 441 6400 0.1699 1.8476 0.6252 2.000001 4.000030 4.000030 6.000058
11 0.7273 529 7744 0.2202 3.2080 1.0613 2.000000 4.000002 4.000002 6.000003
12 0.6667 625 9216 0.2857 5.3602 1.7419 2. 4.000000 4.000000 6.000000
13 0.6154 729 10816 0.3621 8.4907 2.6021 2. 4. 4. 6.
14 0.5714 841 12544 0.4483 13.1560 4.0709 2. 4. 4. 6.
*15 0.5333 961 14400 0.5563 19.5872 5.8239 2. 4. 4. 6.

From table 3 it is evident tat there is fast convergence of the energy levels, also showing the
expected degeneracy. However from table 4 it is clear, that a lot of time was spent evaluating
the basis functions at all integration points. Splitting one time consuming python loop into



two small loops, i.e. unrolling, for code optimization, resulted in the time spent with these
evaluations to be vastly reduced, as shown in table 5. In addition, via changing NGL to 4, the
time for evaluating the basis functions was reduced even further, while the eigen values remained
the same as shown in table 6.

6. Conclusions
Convergence for the energies of ground state, first, second and third excited states was very fast
for the harmonic oscillator, irrespective of the dimension. For the Morse potential, the error
of the eigenvalues showed good agreement with the theoretically expected behaviour. The two
dimensional Python and numpy code was accelerated via unrolling a loop.
Further development of the method and the Python code is currently underway to calculate the
ground state of the hydrogen molecular ion H+

2 and also to extend the code to three dimensions.
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