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Abstract. In this paper we study the perturbations of a cosmic multi-fluid medium consisting
of radiation, dust and a Chaplygin gas. To do so, we follow the 1 + 3 covariant formalism and
derive the evolution equations of the fluctuations in the energy density for each species of fluid in
the multi-fluid system. The solutions to these coupled systems of equations are then computed
in both short-wavelength and long-wavelength modes. Our preliminary results suggest that
unlike most dark energy models that discourage large-scale structure formation due to the rapid
cosmological expansion (which gives little time for fluctuations to coalesce), the Chaplygin-gas
model supports the formation of cosmic structures. This is manifested in the solutions of the
perturbation equations which show the growth of density fluctuations over time.

1. Introduction
In the last two decades, it has become apparent that the standard cosmological model (ΛCDM)
fails to explain the accelerating expansion of the Universe [1], the existence of dark matter in
galaxy clusters [2], the formation of the large-scale structure [3],the inherent inhomogeneity
and anisotropy of the Universe on the small scales [4] and so forth. To solve the first two
problems, scholars have proposed an exotic fluid, the so-called Chaplygin gas (CG), which acts
as a cosmological fluid with an equation of state of the form p = − A

ρα , where p and ρ are the

pressure and energy density, and A and α are constants such that A > 0 and 0 < α ≤ 1 [5].
The purpose of this fluid is to substitute the dark matter and dark-energy components of the
Universe. This model acts as dark-matter in the early Universe and dark-energy in the late
times of the cosmos. In a universe in which we assume the energy density to consist of matter
and CG fluids, the conservation equation reads as

ρ̇t + 3
ȧ

a
(ρt + pt) = 0, (1)

where ρt is the energy density and pt is the pressure for the total fluid1, a is the cosmological scale
factor and the subscript t stands for total (matter+CG) fluids2. From this equation, the energy

1 When referring to matter, we mean either radiation or dust.
2 wm is the equation of state parameter for the matter fluid.



density becomes ρtot(z) =
[
A+B(1 + z)3(1+α)

] 1
1+α +ρm(1 + z)3(1+wm), where B = eC(1+α) with

C a constant of integration.

Whereas much has been said of the Chaplygin gas as an alternative to a unified dark matter
and dark energy model that mimics the cosmic expansion history of a Friedmann-Lemâıtre-
Robertson-Walker (FLRW) background, to our knowledge there is no work in the literature
that considered the cosmological perturbations of this fluid model in the 1+3 covariant formal-
ism [6–8]. Here we derive the density perturbation equations and present the solutions both
analytically and numerically. From the results, we analyse cosmological implications as far as
large-scale structure formation is concerned on both sub- and super-horizon scales [8].

The outline of the manuscript is as follows: in the following section we review the basic spatial
gradient variables. In this section, we also derive the linear evolution equations, applying the
scalar and harmonic decomposition techniques and obtain the wave-number dependent energy
density fluctuations for both CG and matter fluids. In Sec. 3, we present the analytical and
numerical solutions of density perturbations by considering radiation-CG, dust-CG and CG like
fluids for both wave-length ranges. We then devote Sec. 4 to discussions of our results and the
conclusions.

2. Perturbations
We define the spatial gradient variables for the energy density of the individual matter
components ρm, the Chaplygin-gas energy density ρch, the total energy density ρt and the
volume expansion Θ respectively as

Dm
a =

a

ρm
∇̃aρm , Dch

a =
a

ρch
∇̃aρch , Dt

a =
a

ρt
∇̃aρt , Za = a∇̃aΘ .

For a perfect-fluid system, the following fluid equations hold:

ρ̇t = −Θ(ρt + pt) , (2)

(ρt + pt)u̇a + ∇̃apt , (3)

from which one can conclude for the 4-acceleration

u̇a = α
ωchρchD

ch
a

a(ρt + pt)
− wmρmD

m
a

a(ρt + pt)
, (4)

where wch is the equation of state parameter of the CG fluid. Another key equation for a general
fluid is the so-called Raychaudhuri equation and it can be expressed as

Θ̇ = −1

3
Θ2 − 1

2
(ρt + 3pt)− ∇̃au̇a . (5)

After defining the comoving gradients of the cosmological expansion and the comoving fractional
density gradient of the matter components in a covariant and gauge-invariant way and taking
the harmonically decomposed scalar parts, it can be shown that the scalar perturbations in the



matter and CG energy densities evolve according to

∆̈k
m = Θ(ωm −

2

3
)∆̇m +

{
(1 + ωm)

[
1

2
(1 + 3ωm) +

Θ2ωm
3ρt(1 + ωt)

+
w(1 + 3ωt)

2(1 + ωt)
+
k2ωm
a2ρt

]
ρm +

[
1

3
ωmΘ2 − ωm

2
(1 + ωt)ρt

}
∆k
m + (1 + ωm)[

1

2
− 3ωch

2
− Θ2ωch

3ρt(1 + ωt)
− ωch(1 + 3ωt)

2(1 + ωt)
+
k2ωch
a2ρt

]
ρch ∆k

ch , (6)

∆̈k
ch = −Θ

(
ωch +

2

3

)
∆̇k
ch + (1 + ωch)

[
1

2
(1 + 3ω) +

Θ2ω

3ρt(1 + ωt)
+
ω(1 + 3ωt)

2(1 + ωt)

+
k2ωm
a2ρt

]
ρm∆k

m +

{
(1 + ωch)

[
1

2
− 3ωch

2
− Θ2ωch

3ρt(1 + ωt)
− ωch(1 + 3ωt)

2(1 + ωt)

+
k2ωch
a2ρt

]
ρch − ωch

(
1

3
Θ2 +

1

2
(1 + 3ωt)ρt

)
+ Θ2ωch

[
2(1 + 2ωch)ρch +

2

3

]}
∆k
ch , (7)

where

∆k
m = a2∇2ρm

ρm
, ∆k

ch = a2∇2ρch
ρm

, k =
2πa

λ
, (8)

k being the comoving wave-number and λ the wavelength of the perturbations. In redshift space,
the corresponding equations can be recast as

∆′′m =
1

1 + z
(
1

2
− 4ωm)∆′m +

{
(1 + ωm)

(1 + z)2

[
1

2
(1 + 3ωm) +

ωm
(Ωch + Ωm)(1 + ωt)

+

ωm(1 + 3ωt)

2(1 + ωt)
+

9π2(1 + ωm)2ωm

3λ2(1 + z)3(1+ωm)(Ωch + Ωm)

]
3Ωm +

[
3ωm −

3

2
ωm(Ωch + Ωm)(1 + ωt)

}
∆k
m

+
(1 + ωm)

(1 + z)2

[
1

2
− 3αωch

2
− αωch

(Ωch + Ωm)(1 + ωt)
− αωch(1 + 3ωt)

2(1 + ωt)
+

9π2(1 + ωm)2αωch
3λ2(1 + z)3(1+ωm)(Ωch + Ωm)

]
3Ωch∆k

ch , (9)

∆′′ch =
3
√

4− 6√
4(1 + z)

(
ωch(1 + α)− ωch +

2

3

)
∆′ch +

(1 + ωch)

(1 + z)2

[
1

2
(1 + 3ωm) +

ωm
3(Ωm + Ωch)(1 + ωt)

+
ωm(1 + 3ωt)

2(1 + ωt)
+

9π2(1 + ωm)2ωm

3λ2(1 + z)3(1+ωm)(Ωch + Ωm)

]
3Ωm∆k

m +
1

(1 + z)2

{
(1 + ωch)

[
1

2
− 3αωch

2

− αωch
(Ωm + Ωch)(1 + ωt)

− αωch(1 + 3ωt)

2(1 + ωt)
+

9π2(1 + ωm)2αωch

λ2(A+B(1 + z)3(1+α))
1

1+α (Ωch + Ωm)

]
3Ωch

−ωch
(

3 +
3

2
(1 + 3ωt)(Ωm + Ωch)

)
+ 9ωch

[
(1 + α)(1 + 2ωch)3Ωch +

2

3

]}
∆k
ch , (10)

respectively. In GR with normal forms of matter, one would obtain a closed second-order
equation of the density fluctuations and the equations are generally easier to solve. But here
we get a coupled system of second-order equations in the density fluctuations of both matter
and CG, the solutions to which are are more complicated to compute analytically. As such,
we consider short-wavelength (k/aH � 1) and long-wavelength (k/aH � 1) limits of the
perturbations [8] and analyse large-scale structure implications of the resulting solutions.



3. Results and Discussion
For further discussion of the growth of the energy density fluctuations with redshift, we assume
that the Universe has two major non-interacting fluids, namely radiation associated with CG
and dust associated with CG3, and CG fluids in the following subsections.

3.1. Radiation-CG dominated Universe
The equation of state parameter for radiation fluid is wr = 1/3, and the equation of state
parameter for CG reads

ωch = − A

A+B(1 + z)6
,

The equation of state parameter of the total fluid is then given as

ωt =
ρ0,r(1 + z)4 − 3 A√

A+B(1+z)6

3ρ0,r(1 + z)4 + 3
√
A+B(1 + z)6

.

In the early universe, the redshift is large. If, in this case, we take B to be a small value, then
ωch ≈ −1. The equation of state parameter for the total fluid consequently reads as

ωt ≈
ρ0,r(1 + z)4

3ρ0,r(1 + z)4 + 3
√
B(1 + z)3

=
3H2

0 Ω0,r(1 + z)

9H2
0 Ω0,r(1 + z) + 3

√
B
.

Now, if we again make the same assumptions of large redshift, z, and small values of B, then
the total equation of state parameter becomes ωt ≈ 1/3 = ωr.

If we assume radiation fluctuations in the background of the CG fluid, we have ∆r � ∆ch,
i.e., ∆ch ≈ 0, similar analysis is done in [8] for dust-radiation system. Then solutions of our
leading equation, Eq. (9), for the short-wavelength range becomes

∆(z) = C1(1 + z)
1
12 BesselJ

(
Σ

24(Ωch + Ωr)
,

4π
√

Ωr

3λ
√

Ωch + Ωr(1 + z)2

)
+

C2(1 + z)
1
12 BesselY

(
Σ

24(Ωch + Ωr)
,

4π
√

Ωr

3λ
√

Ωch + Ωr(1 + z)2

)
, (11)

where Σ =
√

624Ω2
r − 96Ω2

ch + 528ΩchΩr + 145Ωch + 289Ωr(Ωch + Ωr), C1 and C2 are integra-

tion constants and BesselJ and BesselY are the first- and second-order Bessel functions.

The solution of Eq. (9) for the long-wavelength range is given as

∆(z) = C3(1 + z)
Ωch+Ωr+

ψ
12(Ωch+Ωr) + C4(1 + z)

−(Ωch+Ωr− ψ
12(Ωch+Ωr)

)
, (12)

where ψ =
√

432Ω2
chΩr + 1152ΩchΩ2

r − 96Ω3
ch + 624Ω3

r + 145Ω2
ch + 289Ω2

r + 434ΩchΩr . We as-

sume initial conditions given as ∆in ≡ ∆k(zin = 1100) = 10−3 and ∆′in ≡ ∆′(zin = 1100) = 0
for every mode, k, to deal with the growth of matter fluctuations [8]. Therefore, we determine
the integration constant Ci (i = 1,2,3,4,...) by imposing those initial conditions.

The numerical result of Eq. (11) is presented in Fig. 1. In this figure we observe the oscil-
latory motions of the density perturbations in the short-wavelength modes. The results of Eq.
(12) are shown in Fig. 2 for the case of the long-wavelength modes. In this figure, we clearly
observe the density fluctuations growing up through time.

3 For all analysis, we consider the original CG model, α = 1.



Figure 1. δ(z) versus z for short wavelengths for
Ωr = 1− Ωch. Every colour represents a different
wavelength.

Figure 2. δ(z) versus z for long wave-
lengths for Ωr = 1− Ωch. We used
Ωr = 4.48× 10−5 [10].

3.2. Dust-CG dominated Universe
The equation of state parameter for dust fluid is given as ωd = 0, and the equation of state

parameter of the total fluid then becomes ωt =
− A√

A+B(1+z)6

3ρ0,d(1+z)3+3
√
A+B(1+z)6

≈ 0, for large value of

z. The solutions of our evolution equations for the density perturbations, which is given by Eq.
(9), in a dust-CG system reads

∆(z) = C5(1 + z)
3
4

+ 1
4

√
9+24Ωd + C6(1 + z)

3
4
− 1

4

√
9+24Ωd . (13)

This solution is represented graphically in Fig. 3.

3.3. CG-dominated Universe
Considering the growth of the CG fluctuations as a background of matter fluids, we can let
∆ch � ∆m, causing ∆m ≈ 0. The solution of our leading equation, Eq. (10), then reads as

∆(z) = C7 log(1 + z) sin(Ωr + Ωd + Ωch + 5) + C8 log(1 + z) cos(Ωr + Ωd + Ωch + 5) . (14)

The numerical results are represented in Fig. 4 to depict the growth of CG density fluctuations
in terms of redshift, and the role of CG fluid for the formation of large-scale structure.

What our current results show is that even at the level of the perturbations, the CG fluid
offers an excellent alternative to the narrative of large-scale structures formation. This is be-
cause, contrary to what one would expect in a dark-energy-dominated universe where there
would be less chance of large-scale structure formation due to the rapid cosmological expansion,
we see the growth of the density perturbations with time.

4. Conclusions
In this work, we explored the solutions of cosmological perturbations in a multi-fluid cosmic
medium where one of the fluids is a Chaplygin gas. We applied the 1 + 3 covariant and gauge-
invariant formalism to define the spatial gradient variables and applied scalar and harmonic
decomposition methods to analyse the scalar perturbations of the different energy densities
involved. We considered different systems such as radiation-CG, dust-CG and CG fluids in



Figure 3. δ(z) versus z for dust and for
Ωd = 1− Ωch. We used Ωd = 0.32 [11].

Figure 4. δ(z) versus z for CG, using
1− Ωr − Ωd = Ωch.

both short- and long-wavelength modes to present the numerical and analytical solutions to
the perturbation equations. Our results show that at least in the simplest CG model, the
formation of large-scale structures is enhanced, rather than discouraged (as one would expect
from dark energy fluid models), since all our preliminary calculations show the growth of density
fluctuations with time.
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