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Abstract. We suggest a novel approach to investigate phonon propagation in an FCC lattice
through bond-length oscillations in response to a single atom velocity perturbation. The lattice
is modelled using the Sutton-Chen embedded atom model (EAM) without any energy loss
mechanisms. We begin by showing that the concept of the cut-off distance must be abandoned
to meaningfully simulate the transient behavior of nanoclusters. Oscillations are shown to arise
and propagate through the lattice as a result of the interatomic potential. The waves, which
have fundamental frequency and velocity, are put into the context of Debye theory and are shown
to aptly postulate bulk and surface phonons. Calculations of the C11, C12 and C44 directional
moduli of elasticity calculated along the <100> direction on a thin, nano-sized slab-shaped Cu
lattice consisting of 2281 Cu atoms are in good agreement with the literature values at the
attained simulated temperature. We also show how the cluster temperature is affected by the
passage of the wave.

1. Introduction
Simulation is today central to computational materials science [1, 2, 3]. It is useful to
ascertain material properties that are difficult to determine experimentally [4, 5]. The simulated
particle system scales range from nano to micro and beyond. Metallic nano-clusters are
gaining prominence in many applications, notably in the area of fast, new electronic devices.
These devices communicate using metallic interconnects on scales where quantum physics laws
dominate. It is necessary to establish whether clusters can still be modelled using the traditional
pairwise potentials that routinely applied to the macro-material [6, 7, 8, 9, 10, 11, 12].

In this article, we show, through simulation, that elastic oscillations arise in mechanically
perturbed lattices. We then develop a phonon-method by extending these oscillations. We
restrict the article to the [100] direction for illustration. Using a previously developed Sutton-
Chen (SC) potential toolkit for face-centered cubic (FCC) metals [13], we simulate a system of
2281 copper particles and follow its transient and frequency responses. We then correlate the
atomic displacements and velocities with the spectral densities in the material within the elastic-
phonon dispersion model of Debye theory. Comparison of the results with the literature w.r.t
the calculated elastic moduli and thermal properties show good agreement, indicating feasibility
of the approach [14, 15].
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1.1. Impulse-oscillation approach
Real lattice atoms vibrate about their equilibrium positions, with a character that depends on
lattice defects [16]. An understanding of the energy states E(ω) and spectral density g(E(ω))
is possible through lattice resonant frequency, ω. In this work, we suggest a low-strain elastic
phonon method that can be simulated directly using standard MD [16]. The calculation of bulk
and surface wave dispersion relies on inter-atomic elasticity, which is implicit in the pairwise
potential. Figure (1) shows the simplest, homogeneous particle system. It is possible to model
more advanced systems by using position and mass perturbations. Here, we consider only
the unbounded, homogeneous mono-atomic, “hard-ball” atom system. Figure (2) shows the
proposed harmonic mass-spring oscillator model. The initial, low-amplitude impulse is applied
under the following assumptions.

(i) Energy and momentum are conserved,

(ii) The impacting atom remains uncoupled after impact,

(iii) The ensuing waves can be transverse or longitudinal.

Like other pairwise potentials, the SC potential has three regions, i.e. attractive, equilibrium,
and repulsive. For Cu, it shows strong repulsion at 2.0 Å. In Figure (1), the wave eik̄·r̄ of wave

Figure 1. Mass-spring analogy of FCC
structure along the x axis.

Figure 2. Homogeneous mass-spring
analogy of FCC structure.

vector k̄ at position r̄ is clearly complex for even the simplest lattices due to the superposition
from other directions. However, the simulation of such a model can describe the elastic and
thermal properties of the lattice reasonably well [17, 18]. The dispersion relation for a 1-D
lattice of atomic force constant µ and wave vector k is:

ω2 = (4µ/m) sin2(ka/2), (1)

where a is a lattice parameter. In the first Brillouin zone, the waves are bounded at k=±π/a
[16]. Here, we have discarded the idea of “cut-off” distance (rcut), since the forces extend well
beyond the boundaries of our small clusters.

2. The simulation model
The SC potential can be written as [19, 3]:

Etot =
1

2

N∑
ij

V (rij) +

N∑
i

F (ρ̄i), (2)
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where V=V (rij) is the pairwise interaction potential given by:

V = ε

N∑
i=1

(
N∑

j=i+1

( σ
rij

)n
− c
√
Si

)
, (3)

where

Si =

N∑
j=1,j 6=i

( σ
rij

)m
. (4)

The term F=F (ρ̄i) denotes the energy required to embed an atom into the array, and r̄ij is
the displacement vector between particles i and j. The force on particle i of mass m is readily
shown to be

F i = −∇V (r) = ε
N∑

j=1, j 6=i

[
n
( σ
rij

)n
− cm

2

(
1√
Si

+
1√
Sj

)( σ
rij

)m] r̄ij
r2
ij

. (5)

The constant ε is a dimensionless energy scaling parameter for the system, σ is the equilibrium
lattice constant of the structure and c is a fitting parameter. Table 1 shows the potential and
simulation parameters.

Table 1. SC and simulation parameters.

Parameter
ε 0.012382 eV
m, n, c 6, 9, 39.432
δt 91.75 fs
tstart, tend 0, 250 ps
T 0 K (bulk)

2.1. Simulation parameters and conditions
The thermal modelling of the system was done using energy-partitioned, independent harmonic
oscillators near 0K, to limit thermal noise [20, 21]. The average atom speed vj and temperature
T are related by

vj =

(
kBT

m

)1/2

=

(
2Ekin
Nfm

)1/2

, (6)

where Ekin is the total kinetic energy of all the atoms, and Nf are the available degrees
of freedom. We model only irrotational translation motion, hence Nf=N . Temperatures
higher than 0K but lower than melting point [20, 16] were simulated with time-step velocity
equilibration [22, 23, 24, 25]. For a monoatomic lattice a density of state function, g(ω), describes
available degrees of freedom up to ωD. Its typical Debye frequencies are in the acoustic region
(∼ 1013/s) while a heterogeneous lattice has an additional branch at optical frequencies, i.e.
there is now an energy band gap. We assumed an infinite lattice placed in vacuum and having
no energy loss mechanism.

3. Results and Discussions
The Visual Molecular Dynamics (VMD) program [26] was used for output visualization.
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3.1. Bond-length oscillations
Figures (3)-(6) show the perturbed, transient bond-length variations in the Cu lattice and their
resolved discrete Fast Fourier Transforms (FFT). The equilibrium distances are 2.553 Å and
3.610 Å respectively. A comparison of the Figures (4) and (6) shows that the main peak

Figure 3. Amplitude transient
response.

Figure 4. Phase-frequency re-
sponse.

Figure 5. Amplitude transient
response along [100] deep in the
lattice.

Figure 6. Phase-frequency re-
sponse [100] deep in the lattice.

frequencies differ by almost 5.38 THz for two major crystal directions. The plots correspond
to ω ≈ 3.4 × 1013/s, or phonon energy ~ω ≈ 22.3 meV, which is within the range reported
empirically [27, 28]. The expected maximum vibrational frequency is 2(µ/m)1/2 and occurs at
the boundary of the first Brillouin zone [16]. We find, for Cu (m = 63.5 amu), that µ ≈ 30.8
N/m using ωm ≈ 3.4× 1013/s. The literature value is 35.32 N/m at 296K [16, 28] .

3.2. Wave propagation and the elastic constants
The moduli of elasticity Cαβ for a cubic crystal in the Hooke’s law approximation are related to
the directional strain components (eij). Accepting the solution of the wave equation:

(7)

(8)

u(x, t) = u0 e
i(kx−ωt),

in terms of amplitude u0 and wave vector k = 2π/λ, for the [100] direction we get

ω2ρ = C11k
2 and ω2ρ = C44k

2,

for a longitudinal and transverse waves, respectively.
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Figure 7. 3D-surface atom neighborhood.

3.2.1. Estimation of C11 and C44 Applying ω(k)=ωm at k=π/a in Equation (8) gives C11 =)2
(ωma/π ρ = (2ωm/π)2M/a, with a=b

√
2. Using Figure (4), we get C11 = 139.2 ± 1.4 GPa

at 5.44 THz. Experimental values of 176.2 to 168.4 GPa at 0K and 300K respectively have
been reported [16, 28]. The simulated diagonal√bond-length (b) is 2.5487Å. The simulated bulk
density of 9058 kg/m3, as determined from (M 2/b3), differs from the known by less than 2%.

3.2.2. Expected temperature rise The above perturbation of the static lattice by an adatom
induces propagating bulk and surface phonons [29, 30]. One therefore expects that the
temperature of the overall system will increase. Figure (7), which is a 3-D thermogram of
the opposite [100] face taken at the end of the simulation, shows that temperature does indeed
rise.

4. Conclusions
In this article, we have suggested a standard MD method based on the Sutton-Chen embedded
atom potential to simulate phonon propagation in a metallic FCC lattice. Our test bed consisted
of 2281 Cu atoms. We correlated the temporal and spatial displacements with the spectral
distribution. The calculated values of resonance frequencies, the elastic and other bulk constants
of the lattice are in excellent agreement with empirical, literature values. Future work using the
method could ascertain the effects of higher impacting energies, defects, atomic non-homogeneity
and energy loss mechanisms. The method could prove valuable in the study of heat conduction
of nano-clusters, with interesting implications for nano-device applications.
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