Orbitally-modulated X-ray and Gamma-ray Emission from Millisecond Pulsar Binaries

CJT van der Merwe¹ C Venter¹ Z Wadiasingh^{1,2} AK Harding²

¹Centre for Space Research, North-West University, Potchefstroom, South Africa

²NASA Goddard Space Flight Center, MD, USA

July 9, 2019

Overview

Introduction

- Millisecond Pulsars
- Spider Binaries

Observational Properties

- Radio
- Optical
- X-ray

The Numerical Model

- Assumptions
- 'Flipping' the code

4 Results

- Parameter study on J1723-2873
- Application of the code: J1723-2873, J1311-3430
- 6 Conclusions and Future Work
 - Acknowledgements

Introduction

Millisecond Pulsars (MSPs):

 Pulsars lose energy via: Magnetic dipole radiation

$$\dot{E} = \frac{\mu_0 \left| \ddot{p}_m \right|^2}{6\pi c^3}$$

Spin-down luminosity

$$\dot{E}_{rot} = 4\pi I \dot{P} P^{-3}$$

• Old pulsars typically move into 'graveyard'

$$\tau = \frac{P}{(n-1)\dot{P}}$$

for n>1 and $\Omega_0\gg\Omega$

• Acquires a low mass companion and forms a low-mass X-ray binary (LMXBs)

Introduction

• What are spider binaries?

- MSP with tidally-locked low-mass star.
- Thought to form from recycling scenario.
- Once enough mass is transferred:
 - Accretion is stopped by pulsar radiation pressure.
 - Companion star becomes convective mass loss dominated irradiation
- $\bullet\,$ Fermi-LAT has discovered nearly 100 MSPs nearly 30 are RBs & BWs

• Typical characteristics:

- P_b < 24h.
- Intense pulsar wind heats companion and excites companion wind.
- Flares may occur on companion: variable heating, magnetic variability.
- Interaction of MSP and companion winds form an intra-binary shock.
- BWs are physically smaller with lower-mass companions $(\sim 0.01 M_{\odot})$ than RBs $(\sim 0.1 M_{\odot})$.

www.nasa.gov

Radio properties

- Frequency-dependent radio eclipses.
- Shrouding of MSP radio emission.
- Phase gives shock orientation.
- Asymmetry of eclipse decreases with frequency: higher frequency probes denser regions closer to shock nose.

Ryba & Taylor (1991)

Optical properties

- Photometry plus model of anisotropic heating: constrain system inclination.
- Spectroscopic radial velocity studies: constrain mass ratio.
- Typical $T_{comp} \sim 10^4 K$.
- Radio + optical mass functions: constrain pulsar mass.

C.J.T. van der Merwe

X-ray properties

- Double-peaked emission: Doppler-boosted synchrotron emission from intra-binary shock.
- Hard power laws: hard underlying electron spectrum.
- Spectra extending up to 80 keV: constraints on $B_{sh} \sim 1G$.

Assumptions:

- Spherical polar cap shape for intra-binary shock.
- Azimuthal symmetry about line joining pulsar and companion $(\frac{d}{d\phi} = 0)$.
- Steady-state $(\frac{d}{dt} = 0)$.
- Isotropic black-body emission at temperature T from companion. Neglect SSC for now.
- Approximate particle transport using timescales.
- Isotropic steady-state particle spectrum in comoving frame.
- Bulk flow: linear profile for $\beta \Gamma(\theta)$

'Flipping' the code:

- New origin centred on the pulsar (RB). Now θ increases counterclockwise:
 - Lower IC (lower u_{ph}), Higher SR (larger B)
- *u_{ph}* ~ [Γ(*a R_{star}*)]⁻²
 Lower IC (Deboosting)
- Larger $d\Omega \sim rac{cos(heta_1) cos(heta_2)}{2}$ • Increase Q_0
- Flip u_x to $-u_x$
 - Light curves change 0.5 in phase.

Venter et al. (2015); Harding & Gaisser (1990); Arons & Tavani (1993)

		J1311-3430	J1311-3430	I1702 0027
		Quiescent	Flaring	J1723-2037
Parameter	Symbol		Values	
Pulsar mass	$M_{psr} (M_{\odot})$	2.0	2.0	2.0
Orbital period	P_b (hr)	1.56	1.56	14.8
Inclination	i (degrees)	60	60	40
Mass ratio	q	180	180	3.5
Shock radius	R_0 (units of a)	0.5	0.4	0.3
B-Field at the shock	B_{shock} (G)	1.3	1.2	0.8
Companion temperature	$T_{companion}(K)$	12000	45000	6000
Pair multiplicity	M_{\pm}	1000	5000	1000
Maximum particle conversion efficiency	$\eta_{p,max}$	0.9	1.0	1.5
Pulsar period	Period (ms)	2.56	2.56	1.86
Pulsar spin down	\dot{E} (erg/s)	4.9e34	4.9e34	4.7 e34
Moment of inertia of pulsar	Ι	2.0e45	3.0e45	1.0e45
Index for injected spectrum	Γ	1.8	1.6	2.6
Distance	$d \ (kpc)$	1.40	1.40	0.72
Bulk flow momentum	$\beta_{\Gamma,max}$	4.0	10	6.0

Effect of shock magnetic field

Effect of conversion efficiency

Effect of pair multiplicity

Light curves for J1723-2873

Spectral fit for J1311-3430 (BW)

Light curves for J1311-3430

Conclusions:

- SR and IC from BWs and RBs: phase-resolved spectra and energy-dependent light curves.
- Promising H.E.S.S. targets for modulated SR/IC flux.
- Very promising for CTA era!

Future Work:

- Numerical code:
 - Improved shock geometry
 - Implement spatially-dependent acceleration
 - Refine transport model
 - SSC and Upstream IC components
- Exciting prospects:
 - H.E.S.S. observation time
 - Deeper Wider Faster (DWF) campaign observations

This work is based on the research supported wholly/in part by the National Research Foundation (NRF) of South Africa (grant number 99072) and the National Astrophysics and Space Science Program (NASSP). The grantholder acknowledges that opinions, findings, and conclusions or recommendations expressed in any publication generated by the NRF supported research is that of the author(s), and that the NRF accepts no liability whatsoever in this regard.

Transport equation

$$\frac{\partial N_e}{\partial t} = -\vec{V} \cdot (\vec{\nabla}N_e) + \kappa(E_e)\nabla^2 N_e + \frac{\partial}{\partial E_e}(\dot{E}_{e,tot}N_e) - (\vec{\nabla} \cdot \vec{V})N_e + Q$$

Injection spectrum

$$Q_{PSR}(E_e) = Q_0 E^{-\Gamma} exp(\frac{E_e}{E_{cut}})$$

where
$$E_{cut} = eR_0B_{sh}$$

Spectrum normalization

$$\int_{E_{min}}^{\infty} Q_{PSR} dE_e = (M_{\pm}+1) \dot{N}_{GJ},$$

$$\int_{E_{min}}^{\infty} E_e Q_{PSR} dE_e = \eta_P \dot{E}_{rot},$$

$$\dot{N}_{GJ} = \frac{4\pi^2 B_{PSR} R_{PSR}^3}{2ceP^2}$$

SR loss rate

$$\dot{E}_{SR} = \frac{4\sigma_T c U_B \gamma_e^2}{3}$$
where $U_D = \frac{B_{sh}^2}{2}$

where
$$U_B = rac{D_{sh}}{8\pi}$$

IC loss rate

$$\dot{E}_{IC} = \frac{4\sigma_T c U \gamma_e^2}{3} \frac{\gamma_{KN}^2}{\gamma_{KN}^2 + \gamma_e^2},$$

where $U = \frac{2\sigma_{SB} T^4}{c} (\frac{R_*}{R_0})^2$

Boosting

$$\delta = \frac{1}{\Gamma(1 - \beta \vec{n} \cdot \vec{u})}; \ \nu F_{\nu}^{obs} = \delta^3 \nu F_{\nu}^{em}$$