
A Deep Neural Network for Missing Transverse

Momentum Reconstruction in ATLAS

Matthew Leigh
University of Cape Town, South Africa

E-mail: matthew.leigh@cern.ch

Abstract. The missing transverse momentum (Emiss
T ) of a proton-proton (pp) collision is an

important observable as it serves as an experimental proxy for the net transverse momentum
carried away by undetected particles. Precisely measuring Emiss

T is critical for the understanding
many physical processes which take place at the Large Hadron Collider. The ATLAS experiment
currently utilises several algorithms to reconstruct the Emiss

T . These proceedings describe the
development of a novel algorithm based on a deep neural network to estimate Emiss

T . The
network reconstruction had resolution of 22.7 GeV when tested in simulated tt̄ events which
was better than the next best performing algorithm which had a resolution of 27.3 GeV. The
new estimate was more robust to an increase in pileup and outperformed all other methods
across the full pileup range. The network was also demonstrated to generalise well in real Z
events, improving the resolution from 15.53 to 11.29 GeV.

1. Introduction
The ATLAS detector [1] is an example of a hermetic detector. It was thus designed to observe
nearly all possible decay products produced in the high-energy pp collisions provided by the Large
Hadron Collider (LHC) at CERN. Standard Model neutrinos and many theorised particles in
beyond the SM physics are weakly interacting and are able travel through the detector without
leaving any measurable signal. However, since the total linear momentum of the colliding protons
in the transverse plane is negligible, the presence of these undetectable particles can be inferred
by the resultant transverse momentum imbalance of all observable decay products emerging
from the collision. The negative vectoral sum of the visible momenta in the transverse plane,
Emiss

T , therefore serves as an experimental proxy for the net transverse momentum of undetected
particles. This is an essential part of many ongoing physics analyses at the LHC [2,3], including
the discovery of the Higgs boson in 2012 [4]. Reconstructing Emiss

T requires the output of all
detector subsystems, as well as the most complete representation of the hard scatter (defined
in ATLAS as the vertex with the highest

∑
(ptrackT )2) which is obscured by the presence of

additional “pileup” interactions from other pp scatters in the same bunch crossing. Thus Emiss
T

resolution is expected to get worse as the luminosity of the LHC, and thus the number of pileup
interactions, increases over the next few years. Monte-Carlo (MC) simulations are used in most
analyses to provide a baseline from which one can compare real data captured by ATLAS. To
produce this simulated data, the underlying parton interaction is generated, soft radiation and
hadronization modelling is applied, before the passage of the resultant stable particles through
a detector simulation, to estimate the signals they would produce [5]. The event reconstruction
process applied to MC is identical to the one applied to real data. In this project we extracted



and stored the true transverse momentum of all non-interacting particles in each MC event
before the detector simulation, called Emiss, true

T . A deep neural network [6] is then trained to

learn a mapping from a set of reconstructed observables to Emiss, true
T . This mapping is then

applied and evaluated on real and MC datasets, all of which are orthogonal from those used to
train the network.

2. The ATLAS Detector
The ATLAS detector at the LHC is a general purpose particle detector with nearly 4π solid
angle coverage and a nominal forward-backward symmetry. It consists of an inner tracking
detector (ID) surrounded by a superconducting solenoid magnet which provides a 2 T magnetic
field. Encompassing the ID are electromagnetic (EM) and hadronic calorimeters, and a muon-
spectrometer (MS). The ID consists of a pixel detector, a semiconductor tracker and a transition
radiation tracking detector. It provides tracking information in a pseudo rapidity range of
η < |2.5| 1. The EM calorimeter provides high granularity energy measurements over a range
of η < |3.2|. Steel-scintillating hadronic calorimeters provides central coverage within η < |1.7|.
End-cap regions of the detector contain additional calorimeters up to η < |4.9|. The MS is the
outermost layer of the ATLAS detector and features three large air-core toroidal superconducting
magnet systems with eight coils each. It contains precision tracking chambers covering η < |2.7|.
ATLAS data-taking utilises a two-level trigger system. The first is a hardware-based trigger
which reduces the event rate to around 100 kHz. The second is a software-based high level
trigger, which further reduces the rate to approximately 1 kHz.

3. Missing Transverse Momentum Reconstruction at ATLAS
Over the past few years, different algorithms have been developed to reconstruct Emiss

T at ATLAS
[7]. ATLAS currently offers several variants for physics analyses with different requirements,
several of which are used in this project [8]. Most definitions are object based and are
characterised by two contributions. The first one is from hard-event signals from identified
and calibrated physics objects associated with the hard-scatter. These are fully reconstructed
jets, photons, electrons, and muons. Dedicated rejection procedures are carried out to ensure
that all contributing objects were reconstructed from mutually exclusive detector signals. The
second contribution to Emiss

T is from soft-event signals. These are detector signals that are not
used to reconstruct the objects mentioned above. Most algorithms use a Track Soft Term (TST),
which is created purely from unused particle tracks in the ID which are associated with the hard
scatter. The tracks are required to have passed high-quality reconstruction requirements and
have η < |2.5| and pT > 0.4 GeV. An example of this algorithm is shown in Equation 1, which
show the negative vectoral summation of the terms.
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The total transverse energy in the detector, ΣET, is a scalar which quantifies the total event
activity. This is a crucial variable for understanding the scale and resolution of Emiss

T . It uses

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of
the detector. The z-axis lies along the beam pipe, the x-axis points towards the center of the LHC ring, and the
y-axis points vertically upwards. Cylindrical coordinates are used in the transverse plane where φ is the azimuthal
angle around the z-axis. The pseudorapidity is defined in terms of the polar angle as η ≡ − log tan θ

2
, where θ is

the polar angle off the z-axis.



the same terms, and follows the same overlap removal procedures, but is created using the scalar
sum of the various transverse momenta. The magnitude of the missing transverse momentum
(Emiss

T ), must be non-negative by definition, and in a realistic environment where not all relevant
pT terms are accurately represented in Equation 1, an observation bias towards non-vanishing
values for Emiss

T is introduced. This is most noticeable in final states without genuine missing
transverse momentum, meaning that due to measurements Emiss

T is often non-zero even when
there are no undetected particles.

3.1. Hard Terms
Muons are identified by matching an ID track with an MS track or segment, and are required to
have pT > 10 GeV to be included in the muon term for Emiss

T . Electrons are reconstructed from
clusters in the EM calorimeter associated with an ID track and must also have pT > 10 GeV to
contribute to Emiss

T or ΣET. Photons are identified from their very distinctive electromagnetic
showers in the calorimeters. In this project, photon candidates are required to satisfy a set of
tight criteria to reduce backgrounds and must have pT > 25 GeV. Jets are reconstructed from
clusters of topologically connected calorimeter cells using the anti-kt algorithm [9] with a radius
parameter of R = 0.4. All jets are first required to have pT > 20 GeV after calibration and
η < |4.5|. Jets are further decorated using a tagging algorithm to select jets likely from emerging
from the hard-scatter, known as jet-vertex-tagging (JVT) [10]. The JVT value attributed to
a jet ranges from 0 (likely from pile-up) to 1 (hard-scatter). All central jets (η < |2.5|) are
required to have either a JVT value greater than 0.59 or pT > 60 GeV.

3.2. Alternate Definitions of Emiss
T

Five different algorithms are used and compared in this work. The first three are constructed
as mentioned above and only differ in their treatment of forward jets. Loose Emiss

T includes
contributions from any forward jet with pT > 20 GeV. Tight Emiss

T removes all forward jets with
pT < 30 GeV. FJVT Emiss

T once again uses the same terms as Loose, but all forward jets with
20 > pT > 50 GeV are required to pass the Loose FJVT criteria [11]. CST Emiss

T uses the same
jet selection as the Tight, but replaces the TST with a more inclusive soft term created from
unused calorimeter clusters [12]. Although noise suppression is applied, no additional pileup
suppression techniques are used. The fifth and final algorithm used in this work is somewhat
distinct from the others. Track Emiss

T is not object based and only employs ID tracks. It is
therefore inherently more immune to pileup but ignores all neutral particles.

4. The Deep Neural Network
The main goal of this project was to produce a new definition, Network Emiss

T , that would, on an
event by event basis, choose the unique non-linear combination of all other algorithms to produce
a more accurate estimate. The model chosen was a dense feed-forward artificial neural network
(ANN) [6]. The network did not receive any raw detector signals or even individual particles
as inputs. This was due to the desired scope of the project, which was to provide a final level
correction to the Emiss

T of an event only, and not to redefine object selection or identification.
65 variables were chosen to be inputs for the neural network. These included the outputs of the
5 mentioned algorithms, their unique hard and soft terms and additional variables which might
indicate the accuracy of these definitions. These additional variables included the number of
reconstructed vertices, which indicates the amount of pileup, the amount of forward jet activity
and object based Emiss

T significance [13].

4.1. Network Training
The network was trained on MC simulated datasets where the target variable on an event by
event basis was Emiss, true

T . The dataset was made up of 8 million tt̄, Wt, Wt̄ and diboson (WW ,



WZ, ZZ) processes. Underlying events were generated using Powheg-Box [14] and subsequent
parton showers and hadronisation were handled by Pythia [15].

A grid search to was performed to find the optimal parameter features. Over the course
of this work, more than 1000 different networks were tested. Features that were varied were
the network depth, width, optimiser, learning rate, activation functions, and regularisation
technique. The final network had five hidden layers, each with 1000 neurons featuring a Swish
activation function [16]. After each non-linearity a dropout layer with p = 0.2 was applied.
Gradient descent was performed by the ADAM optimiser [17] based on Huber-Loss [18].

5. Performance on Z → µµ and tt̄ events
5.1. Event Selection
Events involving tt̄ production provide a good topology to measure the reconstruction
performance, especially in interactions with large jet multiplicities. Studies in this region
involved MC simulation only, thus the absence of background allows for very loose selection
criteria, so only standard ATLAS event quality checks were performed [19].

The Z → µµ final state is ideal for the evaluation of Emiss
T performance in real events. Z

boson production is relatively abundant at the LHC and can be selected with high signal to
background ratios, and these events have well understood topologies. In this channel neutrinos
are produced only through very rare heavy-flavour decays in the hadronic recoil. Therefore the
distribution of Emiss

T is strongly peaked close to zero with a finite width that can be largely
attributed to miss-measurements of the inputs to the Emiss

T algorithm. Events were selected
if they fired a single lepton trigger and contained exactly two oppositely charged muons with
pT > 25 GeV, which have an invariant mass between 76 GeV and 106 GeV. Data used in this
channel was recorded by the ATLAS experiment in 2017 at

√
s = 13 TeV with a total integrated

luminosity of 44.3 fb−1.
All events in both channels had to pass standard detector quality assessment criteria. Monte-

Carlo samples of Z → µµ were generated using Sherpa [20]. tt̄, single-t and diboson events were
generated using Powheg, with Pythia handling the parton shower.

5.2. Results
The resolution is determined by the width of the combined distribution of the differences between
the measured Emiss

x(y) and the components of the true Emiss, true
T . The width is taken from the of

the root mean square error (RMSE) of the distributions,

RMSE =

{
RMS(Emiss

x(y) − E
miss, true
x(y) ) tt̄ sample (Emiss, true

T > 0)

RMS(Emiss
x(y) ) Z → µµ sample (Emiss, true

T = 0)
(2)

The performance of the different algorithms was compared to each other in simulated tt̄ events.
In Figure 1a, the resolution is plotted with respect to the ΣET, which can be taken as a
measurement of the hardness of the interaction, providing a useful scale for the evaluation
of the resolution. The network outperforms all other estimates and shows less degradation
with increased event activity. Furthermore, from the plots in Figure 1b, the network shows an
excellent resilience to pileup, based on the consistently greater resolution with respect to the
number of reconstructed vertices.

Data vs MC simulation comparisons for the Tight and the Network Emiss
T algorithms in the

Z → µµ channel are shown in Figure 2. The error on the ratio points show the uncertainty of the
MC samples, accounting for uncertainty in luminosity, cross section and statistics, but not for the
Jet Energy Scale systematic uncertainty (which would be the largest factor in most of the bins
but has yet to be added to this work). Good agreement in the bulk and the same overall shape,
showing that the network, which was trained on MC datasets, is still able to generalise well to



real data. Over 98% of events in the MC Z → µµ contribution, which significantly dominates
all other processes, have |Emiss, true

T | less than 5 GeV and while the aforementioned observation
bias is still visible in both plots, the network more accurately reflects this distribution and leads
to a greater distinction between the signal and background processes. The average resolution
using all algorithms applied to both datasets are shown in Table 1.

(a) (b)

Figure 1. Comparisons of the Emiss
T resolution using different algorithms with respect to the

ΣET (a) of the event and the number of reconstructed vertices (b).

(a) (b)

Figure 2. Data to Monte-Carlo comparisons of the magnitude of the Emiss
T reconstruction using

the Tight (a) and the Network (b) definitions in the Z → µµ channel.



tt̄ Z → µµ
Tight 27.30 15.53
Loose 28.20 18.06
FJVT 27.48 16.55
CST 34.31 24.24
Track 53.96 18.48
Network 22.70 11.29

Table 1. The Emiss
T resolution, measured in GeV, of the different algorithms measured on the

the simulated tt̄ and real Z → µµ datasets.

6. Conclusions
The measurement of Emiss

T is an important contribution to many different physics analyses. The
high luminosities at the LHC however mean that there are large amounts of pileup interactions
which degrade its reconstruction quality. Therefore there are a number of existing algorithms to
reconstruct and estimate Emiss

T depending on the topology of the event. A neural network was
trained to combine these different definitions and produced a reconstruction method which lead
to a greater Emiss

T resolution in both data and MC, as well as an excellent stability with pileup.
While more quantitative analysis still needs to be performed on the resolution improvements,
this project reflects the ongoing work to improve reconstruction performance at ATLAS.
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