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Abstract. The missing transverse momentum (Emiss
T ) of a proton-proton (pp) collision is an

important observable as it serves as an experimental proxy for the total momentum carried
away by undetected particles in the plane perpendicular to the beam line. Precisely measuring
Emiss

T is critical for the understanding many physical processes which take place at the Large
Hadron Collider. The ATLAS experiment currently utilises several algorithms to reconstruct
the Emiss

T . These proceedings describe the development of a novel algorithm based on a deep
neural network to improve Emiss

T reconstruction. The network reconstruction had resolution of
22.7 GeV when tested in simulated tt̄, improving over than the next best performing algorithm
which had a resolution of 27.3 GeV. The new estimate was more robust to an increase in
pileup and outperformed all other methods across the full pileup range. The network was also
demonstrated to generalise well in real Z events, improving the Emiss

T resolution from 15.53 to
11.29 GeV.

1. Introduction
The ATLAS detector [1] is an example of a hermetic detector. It was thus designed to observe
nearly all possible decay products produced in the high-energy pp collisions provided by the Large
Hadron Collider (LHC) at CERN. However, neutrinos and many theorised particles in beyond
the Standard Model physics are weakly interacting and are able travel through the detector
without leaving any measurable signal. Since the total linear momentum of the colliding protons
in the transverse plane is negligible, the presence of these undetectable particles can be inferred
by the resultant transverse momentum imbalance of all observable decay products emerging
from the collision. The negative vectorial sum of the visible momenta in the transverse plane,
Emiss

T , therefore serves as an experimental proxy for the net transverse momentum of undetected
particles. This is an essential part of many ongoing physics analyses at the LHC [2,3], and played
a role in the discovery of the Higgs boson in 2012 [4]. Reconstructing Emiss

T requires the output of
all detector subsystems, as well as the most complete representation of the hard-scatter1 which
gets obscured by the presence of additional pp interactions in the same bunch crossing, known
as “pileup”. Therefore, the performance of current Emiss

T reconstruction algorithms are expected
to get worse as the luminosity of the LHC increases over the next few years. Monte-Carlo (MC)
simulations are used in most analyses to provide a baseline from which one can analyse real
data captured by ATLAS. To produce this simulated data, the underlying parton interaction
is generated, soft radiation and hadronization modelling is applied, before the passage of the

1 The hard-scatter is defined in ATLAS as the reconstructed vertex with the highest
∑

(ptrackT )2.



resultant stable particles through a detector simulation, to estimate the signals they would
produce [5]. The event reconstruction process applied to MC is identical to the one applied to
real data. In this project we extracted and stored the true transverse momentum of all non-
interacting particles in each MC event before the detector simulation, called Emiss, true

T . A deep
neural network [6] was then trained to learn a mapping from a set of reconstructed observables

to Emiss, true
T . This mapping was applied and evaluated on real and MC datasets, all of which

are orthogonal from those used to train the network.

2. The ATLAS Detector
The ATLAS detector at the LHC is a general purpose particle detector with nearly 4π solid
angle coverage and a nominal forward-backward symmetry. It consists of an inner tracking
detector (ID) surrounded by a superconducting solenoid magnet which provides a 2 T magnetic
field. Encompassing the ID are electromagnetic (EM) and hadronic calorimeters, and a muon-
spectrometer (MS). The ID consists of a pixel detector, a semiconductor tracker and a transition
radiation tracking detector. It provides tracking information in a pseudo rapidity range of
η < |2.5|2. The EM calorimeter provides high granularity energy measurements over a range
of η < |3.2|. Steel-scintillating hadronic calorimeters provide central coverage within η < |1.7|.
End-cap regions of the detector contain additional calorimeters up to η < |4.9|. The MS is the
outermost layer of the ATLAS detector and features three large air-core toroidal superconducting
magnet systems with eight coils each. It contains precision tracking chambers covering η < |2.7|.
ATLAS data-taking utilises a two-level trigger system. The Level-1 trigger is hardware-based
and reduces the event rate to around 100 kHz. The Level-2 trigger is a software-based high level
trigger, which further reduces the rate to approximately 1 kHz.

3. Missing Transverse Momentum Reconstruction at ATLAS
Over the past few years, different algorithms have been developed to reconstruct Emiss

T at ATLAS
[7]. ATLAS currently offers several variants for physics analyses with different requirements,
several of which are used in this project [8]. Most definitions are object based and characterised
by two contributions. The first one is from “hard-event” signals, which are signals associated with
identified and calibrated physics objects, such as fully reconstructed jets, photons, electrons, and
muons. Dedicated rejection procedures are carried out to ensure that all contributing objects
were reconstructed from mutually exclusive detector signals. The second contribution to Emiss

T
is from “soft-event” signals. These are the leftover detector signals that were not used to
reconstruct the objects mentioned above. Most algorithms use a Track Soft Term (TST), which
is created purely from unused particle tracks in the ID which are associated with the hard-
scatter. The tracks are required to have passed high-quality reconstruction requirements and
have η < |2.5| and pT > 0.4 GeV. An example of this algorithm is shown in Equation 1, which
show the negative vectorial summation of the terms:
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2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of
the detector. The z-axis lies along the beam pipe, the x-axis points towards the center of the LHC ring, and the
y-axis points vertically upwards. Cylindrical coordinates are used in the transverse plane where φ is the azimuthal
angle around the z-axis. The pseudorapidity is defined in terms of the polar angle as η ≡ − log tan θ

2
, where θ is

the polar angle off the z-axis.



The total transverse energy in the detector, ΣET, is a scalar which quantifies the total event
activity. This is a crucial variable for understanding the scale and resolution of Emiss

T . It uses
the same terms, and follows the same overlap removal procedures, but is created using the
scalar sum of the various transverse momenta. Reconstruction of the magnitude of the missing
transverse momentum (|Emiss

T |) suffers from a positive observation bias towards non-vanishing
values, due to it being strictly positive by definition. This is most noticeable in final states
without genuine missing transverse momentum. This means that the recorded |Emiss

T | is often
non-zero even when there are no undetected particles due to mismeasurements.

3.1. Hard Terms
Muons are identified by matching an ID track with an MS track or segment, and are required to
have pT > 10 GeV to be included in the muon term for Emiss

T . Electrons are reconstructed from
clusters in the EM calorimeter associated with an ID track and must also have pT > 10 GeV
to contribute to Emiss

T or ΣET. Photons are identified from their distinctive electromagnetic
showers in the calorimeters. In this project, photon candidates are required to satisfy a set of
tight criteria to reduce backgrounds and must have pT > 25 GeV. Jets are reconstructed from
clusters of topologically connected calorimeter cells using the anti-kt algorithm [9] with a radius
parameter of R = 0.4. All jets are first required to have pT > 20 GeV after calibration and
η < |4.5|. Jets are further decorated using a tagging algorithm to select jets likely from emerging
from the hard-scatter, known as jet-vertex-tagging (JVT) [10]. The JVT value attributed to
a jet ranges from 0 (likely from pile-up) to 1 (likely from the hard-scatter). All central jets
(η < |2.5|) are required to have either a JVT value greater than 0.59 or pT > 60 GeV.

3.2. Alternate Definitions of Emiss
T

Five different algorithms are used and compared in this work. The first three are constructed
as mentioned above and only differ in their treatment of forward jets. Loose Emiss

T includes
contributions from any forward jet with pT > 20 GeV. Tight Emiss

T removes all forward jets with
pT < 30 GeV. FJVT Emiss

T once again uses the same terms as Loose, but all forward jets with
20 > pT > 50 GeV are required to pass the “Loose” FJVT criteria [11]. CST Emiss

T uses the same
jet selection as the Tight, but replaces the TST with a more inclusive soft term created from
unused calorimeter clusters [12], and although noise suppression is applied, no additional pileup
suppression techniques are used. The fifth and final algorithm used in this work is somewhat
distinct from the others. Track Emiss

T is not object based and only employs ID tracks. It is
therefore inherently more immune to pileup but ignores all neutral particles.

4. The Deep Neural Network
The main goal of this project was to produce a new definition, Network Emiss

T , derived from a
non-linear combination of all other algorithms. The form of this combination would be adaptable
and unique for each event to maximise accuracy. The model chosen for this work was a dense
feed-forward artificial neural network (ANN) [6]. The network did not receive any raw detector
signals or even individual particles as inputs. This was due to the desired scope of the project,
which was to provide a final level correction to the Emiss

T of an event only, and not to redefine
object selection or identification. 65 variables were chosen to be inputs for the neural network.
These included the outputs of the 5 mentioned algorithms, their unique hard and soft terms,
and additional variables which might indicate the accuracy of these definitions. These additional
variables included the number of reconstructed vertices, which indicates the amount of pileup,
the amount of forward jet activity and object based Emiss

T significance [13].



4.1. Network Training
The network was trained on MC simulated datasets where the target variable on an event by
event basis was Emiss, true

T . The dataset was made up of 8 million tt̄, Wt, Wt̄ and diboson (WW ,
WZ, ZZ) processes. Underlying events were generated using Powheg-Box [14] and subsequent
parton showers and hadronisation were handled by Pythia [15].

Over the course of this work, more than 3000 different networks architectures were tested and
compared. Features that were varied included the network depth, width, hidden layer activation
function, loss metric, optimising algorithm, learning rate, and regularisation technique. The
final and most accurate network had five hidden layers, each with 1000 neurons featuring a
Swish activation function [16]. After each non-linearity a dropout layer with p = 0.2 was
applied. Gradient descent was performed by the ADAM optimiser [17] based on the Huber loss
function [18].

5. Performance on Z → ee and tt̄ events
5.1. Event Selection
Events involving tt̄ production provide a good topology to measure Emiss, true

T reconstruction
performance in environments with large jet multiplicities. Studies in this region involved MC
simulation only. The absence of background allowed for very loose selection criteria, so only
standard ATLAS event quality checks were performed [19].

The Z → ee final state is ideal for the evaluation of Emiss
T performance in real events. Z

boson production is relatively abundant at the LHC, has a well understood topology, and can
be selected with high signal to background ratios. In this channel neutrinos are produced
only through very rare heavy-flavour decays in the hadronic recoil. In standard ATLAS Emiss

T
evaluations [7, 8, 12], this process is associated with not having any genuine missing transverse
momentum. Events were selected for this channel if they fired a single lepton trigger and
contained exactly two oppositely charged electrons with pT > 25 GeV, which have an invariant
mass between 76 GeV and 106 GeV. Data used in this channel was recorded by the ATLAS
experiment in 2017 at

√
s = 13 TeV, and had a total integrated luminosity of 44.3 fb−1. All

events had to pass standard detector quality assessment criteria. Monte-Carlo samples of Z → ee
were generated using Sherpa [20]. Background contributions from tt̄, single-t and diboson events
were generated using Powheg, with Pythia handling the parton shower.

5.2. Results
The resolution is determined by the width of the combined distribution of the differences between
the measured Emiss

x(y) and the corresponding components of the true Emiss, true
T . The width is taken

from the of the root mean square error (RMSE) of the distributions,

RMSE =

{
RMS(Emiss

x(y) − E
miss, true
x(y) ) tt̄ sample (Emiss, true

T > 0)

RMS(Emiss
x(y) ) Z → ee sample (Emiss, true

T ≈ 0)
(2)

The performance of the different algorithms was compared to each other in simulated tt̄ events.
In Figure 1a, the resolution is plotted with respect to the ΣET, which can be taken as a
measurement of the hardness of the interaction, providing a useful scale for the evaluation
of the resolution. The network outperforms all other estimates and shows less degradation
with increased event activity. Furthermore, from the plots in Figure 1b, the network shows an
excellent resilience to pileup, based on the consistently greater resolution with respect to the
number of reconstructed vertices.

Data vs MC simulation comparisons for the Tight and the Network Emiss
T algorithms in the

Z → ee channel are shown in Figure 2. The error on the ratio points show the uncertainty of the
MC samples, accounting for uncertainty in luminosity, cross section and statistics. Systematic



uncertainties have yet to be added to this work. Figure 2b shows good agreement between data
and MC in the bulk and the distributions display same overall shape. This shows that the
network, which was trained exclusively on MC datasets, is still able to generalise well to real
data. Over 99% of events in the MC Z → ee contribution, which significantly dominates all
other processes, have |Emiss, true

T | < 3 GeV. Both the Tight and Network |Emiss
T | distributions

show a tail in Z → ee events extending beyond this value, indicating that they both suffer from
the aforementioned observation bias. However, the width of this tail is greatly reduced when
using the network, leading to a greater distinction between the signal and background processes.
The average resolution using all algorithms applied to both datasets are shown in Table 1.

(a) (b)

Figure 1. Comparisons of the Emiss
T resolution using different algorithms with respect to the

ΣET (a) of the event and the number of reconstructed vertices (b).

(a) (b)

Figure 2. Data to Monte-Carlo comparisons of the magnitude of the Emiss
T reconstruction using

the Tight (a) and the Network (b) definitions in the Z → ee channel.



tt̄ Z → ee
Tight 27.30 15.53
Loose 28.20 18.06
FJVT 27.48 16.55
CST 34.31 24.24
Track 53.96 18.48
Network 22.70 11.29

Table 1. The Emiss
T resolution, measured in GeV, of the different algorithms measured on the

the simulated tt̄ and real Z → ee datasets.

6. Conclusions
The measurement of Emiss

T is an important contribution to many different physics analyses. The
high luminosity at the LHC, however, means that there are large amounts of pileup interactions
which degrade its reconstruction quality. Therefore there are a number of existing algorithms to
reconstruct and estimate Emiss

T depending on the topology of the event. A neural network was
trained to combine these different definitions and produced a reconstruction method which lead
to a greater Emiss

T resolution in both data and MC, as well as an excellent stability with pileup.
While more quantitative analysis still needs to be performed on the resolution improvements,
this project reflects the ongoing work to improve reconstruction performance at ATLAS.
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