**SAIP2019** 



Contribution ID: 38

Type: Oral Presentation

## Structural, thermodynamic, electronic and mechanical properties of MCO<sub>3</sub> (M: Ca, Mn, Fe, Co, Ni) precursor materials for Li-ion batteries

Tuesday, 9 July 2019 10:40 (20 minutes)

First-principles calculations were carried out on the structural, thermodynamic, electronic and mechanical properties of MCO<sub>3</sub> precursor materials at 0 K to investigate their possible application as cathodes in Li-ion batteries. Li-ion batteries are the most crucial power sources for portable electronic devices. However, their performance greatly depends on the cathode materials, which serves as a host structure for Li ions. We have employed the plane-wave pseudopotential method framed within the density functional theory (DFT) as implemented in the VASP code. The structural lattice parameters were calculated to 95% agreement with the experimental data, ensuring robustness of the approach employed. The calculated heats of formation are relatively low, suggesting thermodynamic stability. The electronic density of states showed that CaCO<sub>3</sub> and MnCO<sub>3</sub> are insulators, whereas CoCO<sub>3</sub> and NiCO<sub>3</sub> are semiconductors. Interestingly FeCO<sub>3</sub> is predicted to be metallic, suggesting good electric conductivity. The phonon dispersion curves showed negative vibrations in all MCO<sub>3</sub> systems, suggesting mechanical instability.

## Apply to be<br> considered for a student <br> &nbsp; award (Yes / No)?

Yes

## Level for award<br>&nbsp;(Hons, MSc, <br> &nbsp; PhD, N/A)?

MSc

Primary author: Ms MORUKULADI, Mogahabo (UL)

Co-authors: Dr MASEDI, Mallang (UL); Dr LETHOLE, Ndanduleni (UL); Prof. NGOEPE, Phuti (UL)

Presenter: Ms MORUKULADI, Mogahabo (UL)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials