SAIP2019

Contribution ID: 100

Type: Poster Presentation

The development of a test station for the ATLAS Tile Calorimeter Low Voltage Power Supplies

The initial architecture of the Large Hadron Collider (LHC) was so that it can deliver proton-proton collisions at a centre-of-mass energy of 14\,TeV and with instantaneous luminosity of \(1\times10^{34} cm^{-2}s^{-1}\). The Phase II upgrade of the LHC will increase the luminosity by at least 5 times. The present electronics in the detector is not equipped to handle the expected radiation from higher luminosity. Therefore, all on-detector electronics of the Hadronic Tile Calorimeter (TileCal) will be upgraded. The on-detector electronics are powered by the Low Voltage Power Supply (LVPS). South Africa is responsible for the production 50% of the core of the LVPS. Here we describe the design and development of a burning station for the electronic boards.

Apply to be
 considered for a student
 award (Yes / No)?

yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

MSc

Primary author: Mr LEPOTA, Thabo (University of the Witwatersrand)

Co-authors: Prof. MELLADO, Bruce (University of the Witwatersrand); Mr NKADIMENG, Edward (University of the Witwatersrand); Mr VAN RENSBURG, Roger (Wits)

Presenter: Mr LEPOTA, Thabo (University of the Witwatersrand)

Session Classification: Poster Session 1

Track Classification: Track F - Applied Physics