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Abstract. In this paper we study the accelerating expansion of the Universe by unifying dark
matter and dark energy with an exotic fluid - the so-called Chaplygin gas. We consider the
cosmological background expansion of a universe model filled with a radiation-baryonic matter-
Chaplygin gas fluid system and show that such a model can solve the dark matter and dark
energy problems, at least at the level of the background expansion. We present the numerical
results of the deceleration parameter and luminosity distance, and show that they correlate well
with observational data.

1. Introduction
One of the most active areas of research in cosmology today involves trying to understand the
nature of dark matter and dark energy. The Universe is made up of different components,
amongst them matter, radiation and dark matter. Recently, the Chaplygin gas (CG) model
has been proposed. This model mimics the effects of dark energy and dark matter, and can
be a possible substitution for our current standard model of cosmology. The negative pressure
associated with the CG model is related to a positive energy density by a characteristic equation
of state given as

p = − A
ρα

, (1)

where p is the pressure and ρ is the energy density, both in a comoving reference frame with
ρ > 0. A and α are positive constants. The values for α are given by the generalized Chaplygin
gas (GCG) model (0 < α ≤ 1), and the original Chaplygin gas (OCG) (α = 1) [1]. From the
above equation of state, the energy density of the exotic fluid reads

ρch(a) =

[
A+

B

a3(1+α)

] 1
1+α

, (2)



where B = eC(1+α) with C a constant of integration, which means that B is a positive constant.
We can now look at equation (2) and determine how the energy density of the CG evolves

during different epochs. In the limiting case where B
A � a3(1+α) for the early universe, the

energy density in OCG can be given by

ρch(a) ≈
√
B

a6
=

√
B

a3
. (3)

From this we can conclude that the CG corresponds to dust-like matter (or dark matter) in the
early Universe as ρch ∼ a−3.

On the other hand, B
A � a3(1+α) at late times, and for this case, the energy density becomes

ρch(a) ≈ ±
√
A . (4)

This tells us that ρch ∼ constant, and thus the CG corresponds to a cosmological constant [2]. In
this manuscript, we study different cosmological scenarios and present the numerical solutions
describing the evolution of the Universe filled with a CG-radiation-barionic matter system. In
this preceding paper we assume a flat universe (Ωk = 0, where Ωk is the density due to the
curvature of spacetime).

The layout of the manuscript is as follows: in the following section we review the basic
Friedmann equation by unifying the exotic fluid with other components like radiation and
baryonic matter fluids. In Section 3, we present the numerical analysis of some key cosmological
constraints to examine the general evolutionary features of the Universe. We then devote Section
4 to discussions of our results and the conclusions.

2. A Universe consisting of CG, radiation and baryonic matter fluids
We have now concluded that the CG complies to the behaviour of dark matter and dark energy.
It thus now becomes necessary to include radiation and baryonic matter so that we can get
a comprehensive view of this model to describe the expansion of the Universe. To do this,
we will consider a universe in which we assume the energy density to consist of CG, baryons
and radiation. The fluid equations for radiation (r), baryonic matter (b) and CG (ch) hold
independently as

ρ̇i + 3
ȧ

a
(ρi + pi) = 0 , i = {r, b, ch}. (5)

Here ρb = (ρ0)ba
−3 is the energy density of baryonic matter with constant initial value (ρ0)b

and pressure pb = 0 (the equation of state parameter for baryonic matter is ω = 0). The energy
density of radiation is found to be ρr = (ρ0)ra

−4, where (ρ0)r is the constant initial value for
the energy density of radiation, with pressure pr = 1

3ρr. The values for the pressure and energy
density of the CG are given by equations (1) and (2), respectively.

We can write the energy density as the sum of the different energy density components:

ρtot(a) =

[
A+

B

a3(1+α)

] 1
1+α

+ (ρ0)r a
−4 + (ρ0)b a

−3 . (6)

The total pressure can also be given in a similar fashion:

ptot(a) = − A

[ρch(a)]α
+

1

3
ρr(a) . (7)

The fluid equation for the total energy density then becomes

ρ̇tot + 3
ȧ

a
(ρtot + ptot) = 0 . (8)



We can also make a change of variables and use redshift, z, instead of the scale factor, a, as
this is a physically measurable quantity, and the scale factor is not. We do this by substituting
1 + z = a0

a , where a0 is the scale factor at the present time which we normalize to 1. The basic
Friedmann equation consequently reads as

3H2(z) =

{[
A+B(1 + z)3(1+α)

] 1
1+α

+ (ρ0)r (1 + z)4 + (ρ0)b (1 + z)3

}
, (9)

where H = ȧ/a is the Hubble parameter. Dividing equation (9) by 3H0 (H0 being the value of
the Hubble parameter today), we obtain

h2 =
[
D + E(1 + z)3(1+α)

] 1
1+α

+ (Ω0)r (1 + z)4 + (Ω0)b (1 + z)3 , (10)

where h ≡ H
H0

is the normalized Hubble parameter, and D = A
9H4

0
, E = B

9H4
0
, (Ω0)r ≡

(ρ0)r
3H2

0

and (Ω0)b =
(Ω0)b
3H2

0
are dimensionless density parameters. The density parameters for radiation,

baryonic matter and CG can be expressed as

Ωr(z) = (Ω0)r (1 + z)4 , Ωb(z) = (Ω0)b (1 + z)3 , Ωch(z) =
[
D + E(1 + z)3(1+α)

] 1
1+α

, (11)

respectively. The total density parameter for a universe where CG, baryonic matter and radiation
dominate can be written as

1 = Ωr(z) + Ωb(z) + Ωch(z) . (12)

3. Numerical analysis
In this section, we analyse different cosmological constraints, such as the deceleration parameter
and luminosity distance, by considering the CG in addition to the other components of the
Universe.

3.1. Deceleration parameter
From the Friedmann equation, we obtain the acceleration equation of the total fluid as

ä

a
= −1

6
(ρtot + 3ptot) . (13)

With the use of equations (6) and (7), we get the acceleration equation into the form

ä

a
= −1

6

{[
A+B(1 + z)3(1+α)

] 1
1+α − 3A

[
A+B(1 + z)3(1+α)

]− α
1+α

+ 2 (ρ0)r (1 + z)4 + (ρ0)b (1 + z)3

}
. (14)

There exists a deceleration parameter, q, which gives us an understanding of the rate of expansion
of the Universe:

q ≡ − ä
a

1

H2
. (15)

By substituting equations (9) and (14), the deceleration parameter can be written as

q(z) =

[
A+B(1 + z)3(1+α)

] 1
1+α − 3A

[
A+B(1 + z)3(1+α)

]− α
1+α + 2 (ρ0)r (1 + z)4 + (ρ0)b (1 + z)3

2
[
A+B(1 + z)3(1+α)

] 1
1+α + 2 (ρ0)r (1 + z)4 + 2 (ρ0)b (1 + z)3

.

(16)



It is now possible to plot the deceleration parameter versus the redshift as shown in Figure
1. This plot shows an accelerated expansion in negative z until z ∼ 0.6, and a decelerated
expansion after this, which means that the Universe’s expansion was decelerating early in time,
and later (including the present and the future) the expansion is accelerating. This result is
consistent with what one would expect the expansion history of the Universe to look like: in the
current concordance model, there should be a decelerating matter-dominated phase followed by
a dark-energy-driven late time acceleration phase.

Figure 1. A plot of the deceleration parameter, q, versus the redshift, z.

3.2. Luminosity distance DL and distance modulus µ
To test our model, equation (10) is useful. We can use the distance modulus, µ, for Supernovae
Type 1A data and calculate the corresponding distance modulus for the CG model at different
redshifts. The luminosity distance relates two bolometric quantities, namely the luminosity, L,
and the flux, f , of a distant object such as a supernova [3]. From the luminosity distance, the
distance modulus can be derived as a function of redshift. Since we need the luminosity distance,
DL, in terms of redshift, we have to relate it to the transverse comoving distance, DM , to obtain

DL = (1 + z)DM , (17)

Furthermore, we have DM as a function of Ωk [4], given by

DM =


DH

1
Ωk

sinh
(√

Ωk
Dc
DH

)
for Ωk > 0,

Dc for Ωk = 0, and

DH
1
|Ωk| sin

(√
|Ωk| DcDH

)
for Ωk < 0 ,

(18)

where Ωk is the density due to the curvature of spacetime and DH is the Hubble Distance. Since
Ωk = 0 we have DM = Dc, where Dc is called the line-of-sight comoving distance (LSCD) and
is defined as

Dc =

∫
cdt

a
= DH

∫ z

0

dz′

h(z′)
, (19)

where z′ is the redshift of the supernova you are observing. From the LSCD definition, in
conjunction with equation (10), we can calculate the distance modulus. Using the above given



distance definitions, the resulting distance modulus (in Mpc), is given as

µ = m−M = 25− 5× log10

[
3000h̄−1(1 + z)

∫ z

0

dz′

h(z′)

]
, (20)

where m is the apparent magnitude and M is the absolute magnitude of the object [5]. We use
the Hubble distance as DH = 3000h̄ km

s·Mpc , where h̄ is the Hubble uncertainty parameter.
Now that we have a way of relating the Chaplygin gas model to data, we need to discuss the

dataset that we will use. We obtained the Supernovae Type 1A dataset from the SDSS-ll/SNLS3
Joint Light-curve Analysis (JLA). It contains 123 low-redshift (0.01 < z < 0.1) supernovae and
236 intermediate redshift (0.01 < z < 1.1) supernovae. We used the B-filter magnitudes, and
found the absolute magnitudes of these particular supernovae in the research papers [6], [7],
and [8]. The reason we use these types of supernovae is due to the fact that their luminosity is
relatively similar to one another, since all White Dwarfs (WD) are known to have a relative size
and composition. This particular type of supernovae is caused by a WD accreting a low-mass
companion main sequence star. Since their luminosity is relatively the same, the difference in
the flux received, from one WD to another, is a direct consequence of the distance the light had
to travel. We can use redshift to approximate the distance.

To fit the distance modulus to the data, we will use a Markov-Chain-Monte-Carlo (MCMC)
simulation1. The MCMC simulation is able to search for the most probable free parameter
value, given certain physical constrains. The EMCEE Hammer Python package was used to
execute the MCMC simulation. Furthermore, the MCMC calculates the most probable best fit
by calculating the likelihood function for the given free parameters. We assumed that the data
has a Gaussian distribution. The best fit calculated free parameters for the CG model on the
supernovae data is shown in Figure 2.

Figure 2. The Chaplygin gas model’s (10) best fit free parameters to the Supernovae Type 1A
data with cosmological parameter values h̄ = 0.6561+0.074

−0.041, D = 0.9226+0.251
−0.263, E = 0.1986+0.059

−0.064,

and α = 0.6411+0.255
−0.362 as calculated by the MCMC-simulation (L.H.S. panel). The cosmological

parameter values were fixed to Ωb = 0.049 and Ωr(0.674)2 = 2.47 × 10−5. The R.H.S panel
shows the residuals between the predicted model values and the data points.

Figure 2 clearly shows in the R.H.S panel that we have obtained the best fit model for
equation (10), since the average residual deviation is x̄res = −0.0314 with a standard deviation

1 This entire section, including the MCMC simulation code, is similar to work done in the conference proceedings
paper [9]. We used the code developed in that paper to test the model.



of σres = 0.0139. Furthermore, the residuals show no over- or under-estimation on either low-
redshift or intermediate redshift. This suggests that the CG model can accurately predict the
late-time accelerated expansion. However, it is worth noting that the best fit Hubble constant
parameter for the CG model includes within the error approximation, the measured Hubble
constant found by [10]. This is an interesting result, since it is known that the predicted
Hubble constant values between Cosmic Microwave Backgroud (CMB) related results, such as
Planck2018 [10], and supernovae results have a discrepancy between them with the latter’s
results for the ΛCDM model predicting a higher value for the Hubble constant [11].

Thus the CG model is able to give, not only realistic values for the Hubble constant, but it also
lowers the discrepancy between cosmic microwave background (CMB) radiation and supernovae
results. From this we can conclude that the CG model is a viable alternative model to explain
the late-time acceleration.

4. Conclusion
In this paper, we examined the accelerating expansion of the Universe using a theoretical exotic
fluid which mimics dark energy and dark matter. After we reviewed the background of the
Universe, we presented the numerical results of some important cosmological parameters like
the deceleration parameter and luminosity distance by unifying this exotic fluid with the usual
cosmological fluids (baryonic matter and radiation). From the numerical results, we concluded
that the CG is an alternative candidate to explain the current accelerating universe and that
this model is a possible way to solve the dark matter and dark energy problems. It would be
possible to get a more accurate model by adding more constraints on the A, B and α terms
using observational data, and this is a task we plan to undertake in the near future.
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