ON THE EFFECTS OF DISSIPATION RANGE TURBULENCE ON THE PERPENDICULAR DIFFUSION COEFFICIENTS OF COSMIC RAY ELECTRONS

N. DEMPERS
N.E. ENGELBRECHT

NORTH-WEST UNIVERSITY
CENTRE FOR SPACE RESEARCH

SAIP 2019
1. Introduction

2. Turbulence Background

3. Calculation of the Diffusion Coefficients

4. Results

5. Conclusions and Future Work
Introduction
Why Perpendicular Diffusion Coefficients?
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport.
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport.

Perpendicular diffusion coefficients are often required as direct input for cosmic ray modulation models.
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport.

Perpendicular diffusion coefficients are often required as direct input for cosmic ray modulation models.

Why Cosmic Ray Electrons?
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport.
Perpendicular diffusion coefficients are often required as direct input for cosmic ray modulation models.

Why Cosmic Ray Electrons?

Engelbrecht and Burger [2013] found that the modulation of galactic cosmic ray electrons is sensitive to dissipation range turbulence quantities.
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport.
Perpendicular diffusion coefficients are often required as direct input for cosmic ray modulation models.

Why Cosmic Ray Electrons?

Engelbrecht and Burger [2013] found that the modulation of galactic cosmic ray electrons is sensitive to dissipation range turbulence quantities.
These dissipation range quantities were not included in the calculation of perpendicular diffusion coefficients.
Why Perpendicular Diffusion Coefficients?

Perpendicular diffusion forms an integral part of cosmic ray transport. Perpendicular diffusion coefficients are often required as direct input for cosmic ray modulation models.

Why Cosmic Ray Electrons?

Engelbrecht and Burger [2013] found that the modulation of galactic cosmic ray electrons is sensitive to dissipation range turbulence quantities. These dissipation range quantities were not included in the calculation of perpendicular diffusion coefficients.

The aim is to investigate the effects of the omission of the dissipation range quantities on the perpendicular diffusion coefficients.
Turbulence Background
Turbulent Flow

Fluctuations are made up of eddies of different sizes. Each eddy tends to break up into smaller eddies, due to instabilities within the system. When the eddies reach a minimum size, their energy dissipates to the surrounding environment in the form of thermal energy.

Figure: [Davidson, 2004]
Turbulent Flow

Fluctuations are made up of eddies of different sizes. Each eddy tends to break up into smaller eddies, due to instabilities within the system. When the eddies reach a minimum size, their energy dissipates to the surrounding environment in the form of thermal energy.

Figure: [Davidson, 2004]

This process is called the energy cascade.
The amount of energy contained in the turbulent structures of the energy cascade is given by the turbulence power spectrum. This spectrum can be divided into ranges as follows:

Figure: [Nel, 2015]
The amount of energy contained in the turbulent structures of the energy cascade is given by the turbulence power spectrum. This spectrum can be divided into ranges as follows:

Figure: [Nel, 2015]

Due to physical considerations an inner range can also be included for the lowest wavenumbers.
We can express the heliospheric magnetic field as

\[\mathbf{B}(x, y, z) = B_0 \hat{z} + \mathbf{b}(x, y, z) \]

where \(B_0 \) is the uniform background component and \(\mathbf{b} \) is the fluctuating component.

Different models can be used for \(\mathbf{b} \), namely

- **slab model**- assumes fluctuations are propagating in the \(z \)-direction
- **2D model**- assumes fluctuations are propagating in the \((x,y) \)-plane
We can express the heliospheric magnetic field as

\[\mathbf{B}(x, y, z) = B_0 \mathbf{\hat{z}} + \mathbf{b}(x, y, z) \]

where \(B_0 \) is the uniform background component and \(\mathbf{b} \) is the fluctuating component.

A composite turbulence model consisting of 20% slab and 80% 2D turbulence can be used to approximate the heliospheric magnetic field at Earth [Bieber et al., 1996].
CALCULATION OF THE DIFFUSION COEFFICIENTS
The Random Ballistic Decorrelation interpretation of Non-linear Guiding Centre Theory [Ruffolo et al., 2012] presents a linear equation for κ_\perp that can be solved analytically.

\[
\kappa_\perp = a^2 v^2 \frac{3}{2} B^2 0 \sqrt{\pi} 2 \int \epsilon^2 D(k_\perp) \sqrt{\sum_i k^2 i \langle v^2 \rangle} \times \text{erfc} \left[v^2 3 \kappa_\parallel + \gamma (k_\perp) 2 \sqrt{\sum_i k^2 i \langle v^2 \rangle} \right] dk_\perp
\]

Note that:

\[
\kappa = v \lambda^3
\]

Assumptions:
- Axisymmetry
- Transverse fluctuations

Furthermore, we assume magnetostatic turbulence so $\gamma (k_\perp) = 0$.

[-0x-0]
The Random Ballistic Decorrelation interpretation of Non-linear Guiding Centre Theory [Ruffolo et al., 2012] presents a linear equation for κ_\perp that can be solved analytically.

The Perpendicular Diffusion Coefficient:

$$\kappa_\perp = \frac{a^2 v^2}{3B_0^2} \sqrt{\frac{\pi}{2}} \int \frac{e_{2D}(k_\perp)}{\sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \times \text{erfc} \left[\frac{v^2}{3\kappa_\parallel} + \gamma(k_\perp) \right] \frac{\sqrt{\sum_i k_i^2 \langle v_i \rangle^2}}{2} \, dk_\perp$$

Note that:

$$\kappa = v \lambda_3$$

Assumptions:
- Axisymmetry
- Transverse fluctuations

Furthermore, we assume magnetostatic turbulence s.t. $\gamma(k_\perp) = 0$
THE SCATTERING THEORY

The Random Ballistic Decorrelation interpretation of Non-linear Guiding Centre Theory [Ruffolo et al., 2012] presents a linear equation for κ_\perp that can be solved analytically.

The Perpendicular Diffusion Coefficient:

$$\kappa_\perp = \frac{a^2 v^2}{3B_0^2} \sqrt{\frac{\pi}{2}} \int \frac{\epsilon_{2D}(k_\perp)}{\sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \times \text{erfc} \left[\frac{v^2}{3\kappa_\parallel} + \gamma(k_\perp) \right] \frac{d \kappa_\perp}{\sqrt{2 \sum_i k_i^2 \langle v_i \rangle^2}}$$

Assumptions:

- Axisymmetry
- Transverse fluctuations

Furthermore, we assume magnetostatic turbulence s.t. $\gamma(k_\perp) = 0$
The Scattering Theory

The Random Ballistic Decorrelation interpretation of Non-linear Guiding Centre Theory [Ruffolo et al., 2012] presents a linear equation for κ_\perp that can be solved analytically.

The Perpendicular Diffusion Coefficient:

$$\kappa_\perp = \frac{a^2 v^2}{3B_0^2} \sqrt{\frac{\pi}{2}} \int \frac{e_{2D}(k_\perp)}{\sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \times \text{erfc} \left[\frac{\frac{v^2}{3\kappa_\parallel} + \gamma(k_\perp)}{2 \sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \right] dk_\perp$$

Assumptions:

- Axisymmetry
- Transverse fluctuations

Furthermore, we assume magnetostatic turbulence s.t. $\gamma(k_\perp) = 0$
The Random Ballistic Decorrelation interpretation of Non-linear Guiding Centre Theory [Ruffolo et al., 2012] presents a linear equation for κ_\perp that can be solved analytically.

The Perpendicular Diffusion Coefficient:

$$\kappa_\perp = \frac{a^2 v^2}{3 B_0^2} \sqrt{\frac{\pi}{2}} \int \frac{\varepsilon_{2D}(k_\perp)}{\sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \times \text{erfc} \left[\frac{\frac{v^2}{3\kappa_\parallel} + \gamma(k_\perp)}{2 \sqrt{\sum_i k_i^2 \langle v_i \rangle^2}} \right] dk_\perp$$

Note that: $\kappa = \frac{v \lambda}{3}$

Assumptions:

- Axisymmetry
- Transverse fluctuations

Furthermore, we assume magnetostatic turbulence s.t. $\gamma(k_\perp) = 0$
The Omnidirectional Power Spectrum

\[\varepsilon_{2D}(k_\perp) = \frac{C_0 \lambda_{2D} \delta B_{2D}^2}{2\pi k_\perp} \begin{cases} \left(\frac{\lambda_{2D}}{\lambda_{out}} \right)^{-1} (\lambda_{out} k_\perp)^{-p}, & |k_\perp| < \frac{1}{\lambda_{out}} \\ (\lambda_{2D} k_\perp)^{-1}, & \frac{1}{\lambda_{out}} \leq |k_\perp| < \frac{1}{\lambda_{2D}} \\ (\lambda_{2D} k_\perp)^{-s}, & |k_\perp| \geq \frac{1}{\lambda_{2D}} \end{cases} \]

where \(p = 3 \) and \(s = \frac{5}{3} \). \(\delta B_{2D}^2 \) is the total magnetic variance.

The normalisation constant \(C_0 \) can be determined by setting:

\[\int_0^\infty 2\pi k_\perp \varepsilon_{2D}(k_\perp) dk_\perp = \delta B_{2D}^2 \]

This yields:

\[C_0 = \frac{(p + 1)(s - 1)}{\rho + s + (p + 1)(s - 1) \log \left(\frac{\lambda_{out}}{\lambda_{2D}} \right)} \]
"THE OMNIDIRECTIONAL POWER SPECTRUM

\[\varepsilon_{2D}(k_{\perp}) = \frac{C_0 \lambda_{2D} \delta B_{2D}^2}{2\pi k_{\perp}} \begin{cases}
(\frac{\lambda_{2D}}{\lambda_{out}})^{-1} (\lambda_{out} k_{\perp})^{-p} & , \quad |k_{\perp}| < \frac{1}{\lambda_{out}} \\
(\lambda_{2D} k_{\perp})^{-1} & , \quad \frac{1}{\lambda_{out}} \leq |k_{\perp}| < \frac{1}{\lambda_{2D}} \\
(\lambda_{2D} k_{\perp})^{-s} & , \quad |k_{\perp}| \geq \frac{1}{\lambda_{2D}}
\end{cases} \]

![Graph showing omnidirectional power spectrum with wavenumber on the x-axis and omnidirectional power spectrum on the y-axis, with a peak at a wavenumber of approximately 100 AU\(^{-1}\).]
The New Omnidirectional Power Spectrum

\[\varepsilon_{2D}(k_\perp) = \frac{C_0 \lambda_{2D} \delta B_{2D}^2}{2\pi k_\perp} \begin{cases}
(\frac{\lambda_{2D}}{\lambda_{out}})^{-1} (\lambda_{out} k_\perp)^{-p} & , \quad |k_\perp| < \frac{1}{\lambda_{out}} \\
(\lambda_{2D} k_\perp)^{-1} & , \quad \frac{1}{\lambda_{out}} \leq |k_\perp| < \frac{1}{\lambda_{2D}} \\
(\lambda_{2D} k_\perp)^{-s} & , \quad \frac{1}{\lambda_{2D}} \leq |k_\perp| < \frac{1}{\lambda_D} \\
(\frac{\lambda_D}{\lambda_{2D}})^s (\lambda_{D} k_\perp)^{-q} & , \quad |k_\perp| \geq \frac{1}{\lambda_D}
\end{cases} \]

where \(p = 3 \), \(s = \frac{5}{3} \) and \(q = 3 \).

Normalisation yields:

\[
C_0 = \left[\frac{\lambda_{2D}^2}{(p+1)\lambda_{out}^2} + \frac{\lambda_{2D}}{(q-1)\lambda_D} + \frac{\lambda_D - \lambda_{2D}}{(s-1)\lambda_D} + \log \left(\frac{\lambda_{out}}{\lambda_{2D}} \right) \right]^{-1}
\]
The New Omnidirectional Power Spectrum

\[\varepsilon_{2D}(k_\perp) = \frac{C_0 \lambda_{2D} \delta B_{2D}^2}{2\pi k_\perp} \left\{ \begin{array}{ll}
(\frac{\lambda_{2D}}{\lambda_{out}})^{-1}(\lambda_{out} k_\perp)^{-p} & , |k_\perp| < \frac{1}{\lambda_{out}} \\
(\lambda_{2D} k_\perp)^{-1} & , \frac{1}{\lambda_{out}} \leq |k_\perp| < \frac{1}{\lambda_{2D}} \\
(\lambda_{2D} k_\perp)^{-s} & , 1 \lambda_{2D} \leq |k_\perp| < 1 \lambda_D \\
(\frac{\lambda_D}{\lambda_{2D}})^{s}(\lambda_D k_\perp)^{-q} & , |k_\perp| \geq \frac{1}{\lambda_D}
\end{array} \right. \]
The equations for the parallel mean free path were derived from two different models, namely:

The Damping Model

\[
\lambda || = \frac{3s}{\sqrt{\pi(s-1)}} \frac{R^2}{k_{min}} \left(\frac{B_0}{\delta B_{slab}} \right)^2 \left(\frac{1}{4\sqrt{\pi}} + 2 F_1(1, \frac{1}{p-1}, \frac{p}{p-1}; -\frac{\pi a}{f_1} Q^{p-2}) \frac{\sqrt{\pi a}}{f_1 R^s Q^{p-s}} + \frac{2}{\sqrt{\pi(2-s)(4-s)}} \frac{1}{R^s} \right)
\]

and

The Random Sweeping Model

\[
\lambda || = \frac{3s}{\sqrt{\pi(s-1)}} \frac{R^2}{k_{min}} \left(\frac{B_0}{\delta B_{slab}} \right)^2 \left(\frac{1}{4\sqrt{\pi}} + \left(\frac{1}{\Gamma(q/2)} + \frac{1}{\sqrt{\pi(q-2)}} \right) \frac{b^{q-2}}{Q^{q-s} R^s} + \frac{2}{\sqrt{\pi(2-s)(4-s)}} \frac{1}{R^s} \right)
\]

where

\[
f_1 = \frac{2}{p-2} + \frac{2}{2-s},
\]

\[
R = \frac{P}{B_0 k_D},
\]

\[
Q = \frac{P}{B_0 k_D} \quad \text{and}
\]

\[
b = \frac{v}{2\alpha_d v_A}, \quad \alpha_d \in [0, 1]
\]
Evaluation at 1 AU (using solar minimum turbulence quantities) yields:
Results
The Perpendicular Diffusion Coefficient

\[\kappa_\perp = \frac{\sqrt{3} va C_0 B_0 \delta B^2}{3 B_0 \sqrt{\delta B_{tot}}} \times \]

\[\left[\frac{\sqrt{\pi} \lambda_2 T}{p} \left(\text{Erfc}\left[\sqrt{3}X \lambda_2 T\right] - \frac{B_0 \sqrt{\frac{3}{\pi}} \lambda_2 T E_{1+p} \left[\frac{3X^2 \lambda_2^2}{2}\right]}{a \sqrt{\delta B_{tot}} \lambda_\parallel} \right) \right] \]

\[+ \sqrt{\pi} \left(\frac{a \sqrt{\delta B_{tot}} \lambda_\parallel}{B_0 \sqrt{3\pi}} \left(e^{-3X^2 \lambda_2^2} - e^{-3X^2 \lambda_2^2} \right) - \lambda_2 D \text{Erfc}\left[\sqrt{3}X \lambda_2 D\right] + \lambda_2 T \text{Erfc}\left[\sqrt{3}X \lambda_2 T\right] \right) \]

\[+ \frac{3-s}{s} \lambda_2 D (X \lambda_2 D)^{-s} \left[\left(\frac{3s/2}{s} \sqrt{\pi} (X \lambda_2 D)^s \text{Erfc}\left[\sqrt{3}X \lambda_2 D\right] - (X \lambda_2 D)^s \text{Erfc}\left[\sqrt{3}X \lambda_2 D\right] \right) - \Gamma \left[\frac{1+s}{2}, 3X^2 \lambda_2^2 D \right] + \Gamma \left[\frac{1+s}{2}, 3X^2 \lambda_2^2 D \right] \right) \]

\[+ \frac{3-q/2}{q} \lambda_2 D \left(\frac{\lambda_D}{\lambda_2 D} \right)^s (X \lambda_D)^{-q} \left(\frac{3q/2}{s} \sqrt{\pi} (X \lambda_D)^q \text{Erfc}\left[\sqrt{3}X \lambda_D\right] + \Gamma \left[\frac{1+q}{2}, 3X \lambda_2 D \right] - \Gamma \left[\frac{1+q}{2}, 3X \lambda_2 D \right] \right) \]

where \(X = \frac{B_0}{a \sqrt{\delta B_{tot}} \lambda_\parallel} \)
Evaluation at 1 AU (using solar minimum turbulence quantities) yields:
ANALYSIS OF PERPENDICULAR MEAN FREE PATHS

Damping Model:

![Graph showing Perpendicular Mean Free Path vs Rigidity (GV)]
ANALYSIS OF PERPENDICULAR MEAN FREE PATHS

Random Sweeping Model:
CONCLUSIONS AND FUTURE WORK
CONCLUSIONS AND FUTURE WORK

The model used for κ_\parallel affects the values of κ_\perp.

By approximating the power spectrum as only the energy containing range term, the calculations are greatly simplified.

In the future:

Solve κ_\perp for dynamical turbulence, i.e.

$\gamma(k_\perp) \neq 0$.

Investigate the effects of these results on cosmic ray transport.
The model used for $\kappa_{||}$ affects the values of κ_\perp.

The dissipation range term of κ_\perp is negligible. Cosmic ray modulation studies that omit dissipation range effects are therefore accurate.

In the future:

Solve κ_\perp for dynamical turbulence, i.e. $\gamma(k_\perp) \neq 0$. Investigate the effects of these results on cosmic ray transport.
CONCLUSIONS AND FUTURE WORK

The model used for $\kappa_{||}$ affects the values of κ_{\perp}.

The dissipation range term of κ_{\perp} is negligible. Cosmic ray modulation studies that omit dissipation range effects are therefore accurate.

The energy containing range term has the largest contribution towards the values of κ_{\perp} and would therefore serve as a good approximation for κ_{\perp}.

By approximating the power spectrum as only the energy containing range term, the calculations are greatly simplified.

In the future:

Solve κ_{\perp} for dynamical turbulence, i.e. $\gamma(k_{\perp}) \neq 0$.

Investigate the effects of these results on cosmic ray transport.
The model used for κ_{\parallel} affects the values of κ_{\perp}.

The dissipation range term of κ_{\perp} is negligible. Cosmic ray modulation studies that omit dissipation range effects are therefore accurate.

The energy containing range term has the largest contribution towards the values of κ_{\perp} and would therefore serve as a good approximation for κ_{\perp}.

By approximating the power spectrum as only the energy containing range term, the calculations are greatly simplified.
The model used for κ_\parallel affects the values of κ_\perp.

The dissipation range term of κ_\perp is negligible. Cosmic ray modulation studies that omit dissipation range effects are therefore accurate.

The energy containing range term has the largest contribution towards the values of κ_\perp and would therefore serve as a good approximation for κ_\perp.

By approximating the power spectrum as only the energy containing range term, the calculations are greatly simplified.

In the future:
- Solve κ_\perp for dynamical turbulence, i.e. $\gamma(k_\perp) \neq 0$.
- Investigate the effects of these results on cosmic ray transport
Turbulence Quantities at 1 AU

Outer scale:
$\lambda_{2D} = 0.0074 AU$ [Weygand et al., 2011]

Turnover scale:
$\lambda_{2T} = 0.1 AU$ [Engelbrecht, 2019]

Dissipation scale:
$\lambda_D = 10^{-5} AU$ [Leamon et al., 2000]

