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Abstract. A number of potentially super-hard materials were examined using ab-initio methods. Compound 

phases of varying lattice stoichiometry in the carbon-boron (B-C) binary system, in the forms, C8-x Bx were 

proposed as possible super-hard materials with useful applications. The materials with x = 0 to 3, i.e.:  diamond 

(C), cubic C7B (c-C7B), rhombohedral C3B (r-C3B) and orthorhombic C5B3 (o-C5B3) were found to be 

dynamically and mechanically stable, diamond was used as a standard for comparison. On the basis of bulk 

modulus results these materials were found to potentially have super-hard characteristics. Systematic trends were 

established, the hardness was observed to reduce with increasing boron content. The materials under study were 

all determined as being brittle with diamond being the most brittle, C3B and C5B3 were the least brittle. Of the 

materials studied, diamond was determined to have the lowest degree of anisotropy while C5B3 had the highest. 

1.  Introduction 
Super-hard materials have a Vickers hardness (HV) which is greater than 40 GPa [1, 2]. Diamond and cubic 

boron nitride (c-BN) are the super-hard materials that are known best. Diamond has the drawback of its 

oxidation reactions [3] or redox reactions with metallic elements [4] at temperatures exceeding 80 K. Despite the 

high oxidation resistance temperature and high chemical inertness of c-BN, its hardness is only about half that of 

diamond [5]. A lot of theoretical and experimental work has therefore been devoted to the search for new ultra-

hard materials with a view to replace diamond and c-BN [2, 6-8].  Materials with a value of the bulk modulus 

exceeding 250 GPa are expected to have super-hard characteristics [9]. Hardness is known to scale well with the 

bulk and shear modulus in diamond-like materials [10]. The elastic response of a single crystal is seldom 

isotropic, essentially all the known crystals are elastically anisotropic meaning that the elastic moduli are 

generally dependent on the different crystal orientations. The degree of anisotropy in the properties of materials 

is very important in their application. The generation of microcracks and lattice distortions in materials is often 

related to the elastic anisotropy. Ledbetter and Migliori [11] point out the effects of elastic anisotropy in 

dislocation dynamics, phase transformations and other crystal phenomena.  There have been studies reported on 

the carbon-boron (C-B) system [12-15]. We make an extension of this research work by studying the structural, 

mechanical, dynamic properties and anisotropy of compound phases with varying lattice stoichiometry in the 

form, C8-xBx.  

2.  Computational methods 
The method of calculation applied in this work is based on the density functional theory (DFT) [16]. We have 

adopted the Quantum Espresso [17] software package implementation of DFT. The exchange-correlation 

interaction between the electrons was modeled using the generalized gradient approximation (GGA-PBE) [18]. 

The ultra-soft pseudo-potential method was used to calculate the interaction between the electrons and the ion 

cores. The cut-off energy used for the plane-wave function was 50 Ry and the k-point mesh Brillouin zone 

sampling was taken as 666 Monkhorst Pack [19]. The convergence threshold of the self-consistent field (SCF) 

was within 10
-3

 eV/atom. 

Unit cells of eight atoms in the diamond lattice structure were considered with C or B atoms representing a 

particular stoichiometry at the lattice points. The lattice positions and atomic types at each position were stored 

in matrix arrears. A C++ template library for linear algebra called Eigen [20] was used to randomise the atomic 



 

 

 

 

 

 

placement. Variable-cell dynamics calculations were performed on the starting cell to optimize the atomic 

position geometry and cell parameters using the Quantum Espresso [17] package. This was achieved by 

performing some relaxation operations which allowed the atomic positions to self-adjust in accordance with the 

inter-atomic forces while allowing the unit cell to vary; equilibrium atomic structures were thereby achieved. 

The space-group and symmetry operations of these equilibrium configurations were identified using the utility 

program, SGROUP [21]. 

The procedure of randomising the atomic placement (using Eigen) in the starting cell, variable-cell relaxation 

(using Quantum Espresso) and identification of the final converged configurations (using SGROUP), was carried 

out several times for each value of x in C8-x Bx where x = 0 to 7. The most ‘favoured’ outcome, i. e., the final 

configuration that was observed the most times after several runs (in some cases it was the only configuration 

repeatedly observed) was chosen for further investigation. These configurations were visualized using the 

crystalline structure visualization and analyser software package, Xcrysden [22] after which they were tested for 

dynamic stability as explained in the next section. The dynamically stable structures were then analysed using 

the Elastic software package [23], which was used to calculate the second-order elastic constants (SOECs) using 

the numerical differentiation of the total lattice energy with respect to the associated strain.  Three types of 

averaging calculations were carried out in order to obtain the bulk and shear moduli of the various compounds: 

the Voigt [24] calculation which assumes a uniform strain, the Reuss [25] calculation which is valid for uniform 

stress and the Hill [26] averaging calculation which considers the Voigt and Reuss values as the uppermost and 

lowest predictions respectively. The bulk and shear moduli in the Voigt calculation are given by: 

 

𝐵𝑉 =
1

9
  𝐶11 + 𝐶22 + 𝐶33 + 2 𝐶12 + 𝐶13 + 𝐶23        (1) 

and 

𝐺𝑉 =
1

15
  𝐶11 + 𝐶22 + 𝐶33 −  𝐶12 + 𝐶13 + 𝐶23 + 3 𝐶44 + 𝐶55 + 𝐶66     (2)  

 

respectively, where Cij are the stiffness constants. 

In the Reuss calculation the bulk and shear moduli are given by: 

 

𝐵𝑅 =   𝑆11 + 𝑆22 + 𝑆33 + 2 𝑆12 + 𝑆13 + 𝑆23  
−1     (3)  

and 

𝐺𝑅 = 15 4 𝑆11 + 𝑆22 + 𝑆33 −  𝑆12 + 𝑆13 + 𝑆23 − 3 𝑆44 + 𝑆55 + 𝑆66  −1   (4) 

 

respectively, where Sij are the compliances. 

The Hill-averaged bulk and shear moduli are given by: 

 

𝐺𝐻 =
1

2
 𝐺𝑉 + 𝐺𝑅         (5) 

and 

𝐵𝐻 =
1

2
 𝐵𝑉 + 𝐵𝑅 .        (6) 

The Hill-averaged Young moduli, EH and Poisson ratios, H are given by the expressions: 

 

𝐸𝐻 =
9𝐵𝐻𝐺𝐻

3𝐵𝐻 +𝐺𝐻
           (7) 

and 

 𝜐𝐻=
3𝐵𝐻−2𝐺𝐻

2 3𝐵𝐻 +𝐺𝐻  
.         (8) 

 

The elastic constant results presented for all materials in this work are Hill-averaged, unless indicated otherwise. 

In cubic crystals, the linear bulk modulus is the same for all directions and hence the shear anisotropy alone 

determines the elastic anisotropy. For other types of crystals, the elastic anisotropy arises from the anisotropy of 

the linear bulk modulus in addition to the shear anisotropy. An appropriate way to quantify the degree of 

anisotropy for both the shear and the bulk contributions is by using the universal elastic anisotropy index, AU 

[27]which is given by, 

 

𝐴𝑈 = 5
𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐵𝑅
− 6.        (9) 



 

 

 

 

 

 

The shear modulus is G and the bulk modulus is B, the subscripts V and R represent the Voigt and Reuss 

estimates, respectively. If a single crystal is isotropic then, GV = GR and BV = BR , making AU equal to zero. In 

cubic crystals BV = BR but GV  GR. The departure of AU from zero defines the extent of single crystal anisotropy. 

3.  Results 
The value, x = 0 represents diamond which was used as a standard for comparison. Crystal structure diagrams 

were visualized using Xcrysden [22]. The unrelaxed unit cell of CB is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Unrelaxed unit cell crystal structure of CB. 

 

Dynamic stability considers the complete vibrational spectrum of a material: a material is dynamically stable 

when theoretical calculations show no imaginary or negative phonon frequencies. The Quantum Espresso [17] 

implementation of Density-Functional Perturbation Theory can be used to calculate phonon frequencies of 

compounds at a chosen reciprocal lattice vector of the respective Brillouin zone. The results of our phonon 

calculations at the center of the Brillouin zones (gamma point) are presented in Table 1 for C8-xBx materials 

where x = 0 to 7. This table shows that the materials where x = 0 to 3, i.e., diamond (C), C7B, C3B (or C6B2) and 

C5B3 have no negative phonon frequencies, these four materials are therefore dynamically stable. The calculation 

covered 24 frequencies for each material but Table 1 only shows the first 6, all other frequencies were positive. 

The few relatively low frequencies in the table are indicative of acoustic modes while the higher frequencies 

belong to the optical modes of vibration.  The Elastic software package [23] was used to obtain the elastic 

constants for the four materials that were identified as being dynamically stable; the results are shown in Table 2.  

The materials in Table 2 were determined to be mechanically stable, as will be discussed in the next section. 

This qualified these materials for the determination of their bulk, B, shear, G and Young, E moduli. The Hill 

averaged values of B, G and E were obtained from the stiffness constants, Cij and compliances, Sij; the results are 

shown in Table 3. The table also shows the B/G ratio and the Poison ratio. 

 
Table 1. Results of phonon calculations for the compounds, at the  point of the Brillouin zones. Only 6 out 

of 24 frequencies  covered for each material are shown in the table, all other frequencies were positive. 
 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

Table 2. Independent stiffness constants, Cij and compliances, Sij for C8-xBx materials where x = 0 to 3.  

MATERIAL 

AND 

CRYSTAL 

STRUCTURE 

C 

 

Cubic 

F 

(fcc) 

C7B 

 

Cubic I 

(bcc) 

 

 

C3B 

 

 

 

C5B3 

 

CB 

 

C3B5 

 

CB3 

 

CB7 

 

Cubic 

I 

(bcc) 

FREQUENCY 

NUMBER 

cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 cm-1 

1 186 148 26 46 -1675 -181 -297 -182 

2 186 148 48 52 -171 -80 -297 -182 

3 806 148 48 87 -138 -48 -113 -182 

4 806 671 505 361 -63 98 -61 87 

5 806 671 590 429 73 310 -61 87 

6 806 671 590 450 80 380 195 87 
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Material Crystal 

Structure 

Stiffness matrix elements, Cij (GPa) and  compliances, Sij (x10
-5

 GPa
-1

) 

C11 

 

S11 

C12 

 

S12 

 

C13 

 

S13 

 

C14 

 

S14 

 

C22 

 

S22 

 

C23 

 

S23 

 

C33 

 

S33 

 

C44 

 

S44 

 

C55 

 

S55 

 

C66 

 

S66 

 

Diamond 

C 

Cubic F 

(fcc) 

1064 

97 

133 

-11 

     561 

178 

  

C7B Cubic I 

(bcc) 

689 

176 

237 

-45 

     476 

210 

  

C3B Rhombohedral I 612 

201 

 

193 

-55 

 

194 

-46 

 

-72 

51 

 

 

 

 

612 

193 

358 

300 

  

C5B3 Orthorhombic 455 

296 

 

264 

-139 

 

98 

19 

 604 

284 

285 

-123 

547 

243 

334 

300 

303 

330 

334 

300 

 

 
Table 3. Hill bulk moduli, B, shear moduli, G and Young moduli, E for the four dynamically stable materials. The B/G ratio and Poison 

ratio are also presented. 

 
Material Crystal 

Structure 

Bulk 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Young 

Modulus 

(GPa) 

 

B/G 

Poison 

Ratio, 

 
 

Diamond 

C 

Cubic F 

(fcc) 

443 521 1122 0.850 0.08 

C7B Cubic I 

(bcc) 

388 353 812 1.099 0.15 

C3B Rhombohedral I 333 253 606 1.316 0.20 

C5B3 Orthorhombic 309 235 563 1.315 0.20 

  

Table 4 presents the Voigt and Reuss bulk and shear moduli together with the universal elastic anisotropy 

index, calculated using Equation (9). 

  

 
Table 4. The Voigt and Reuss bulk and shear moduli together with the universal elastic anisotropy index for the materials. 

 

 

4.  Discussion 
Materials with a value of the bulk modulus exceeding 250 GPa are expected to have super-hard characteristics 

[9]. The bulk modulus results shown in Table 2 indicate that all the compounds with x = 0 to 3 could potentially 

have super-hard characteristics.  

The original conditions for mechanical stability were proposed by Born-Huang [28]. We adopt the modified 

conditions of Mouhat and Coudert [29] in this work. A general necessary but not sufficient Born stability 

Material Crystal 

Structure 

BV 

(GPa) 

BR 

(GPa) 

GV 

(GPa) 

GR 

(GPa) 

 

Universal 

Elastic 

Anisotropy 

Index, AU 

Percentage 

Anisotropy 

Diamond 

C 

Cubic F 

(fcc) 

443 443 523 518 0.041 0.4% 

C7B Cubic I 

(bcc) 

388 388 376 330 0.699 7.0% 

C3B Rhombohedral I 333 333 269 238 0.650 6.5% 

C5B3 Orthorhomb

ic 

322 295 258 213 1.160 11.6% 



 

 

 

 

 

 

condition noted by Fedorov [30] is that all diagonal elements should be positive  𝐶𝑖𝑖  > 0, ∀𝑖 . An examination 

of all the diagonal elements in Table 2 shows that all the compounds studied satisfy this condition. 

Another necessary general Born stability condition is, 

 𝐶𝑖𝑗  
2

< 𝐶𝑖𝑖𝐶𝑗𝑗 ∀𝑖, 𝑗.          (10)  

An examination of the elastic constants in Tables 2 also shows that all the compounds studied satisfy the 

condition in Equation (10). The compounds were further tested to see if their elastic constants satisfy the Mouhat 

and Coudert [29] sufficient conditions for mechanical stability.   

The sufficient mechanical stability conditions for the cubic system, which only has three independent elastic 

constants, are: 

𝐶11 − 𝐶12 > 0 ;  𝐶11 + 2𝐶12 > 0.        (11) 

Using the results shown in Table 2 we see that the elastic constants for diamond and C7B, which both have 

the cubic bravais lattice, satisfy the sufficient Born stability conditions given in Equation (11). These compounds 

are therefore mechanically stable. According to Mouhat and Coudert [29] the sufficient criteria for the 

rhombohedral I class, which has 6 independent elastic constants, are: 

𝐶11 >  𝐶12 ; 

𝐶13
2 <

1

2
𝐶33 𝐶11 + 𝐶12 ;                      (12) 

𝐶14
2 <

1

2
𝐶44 𝐶11 − 𝐶12 . 

The elastic constants for C3B (or C6B2), as presented in Table 2, show that the sufficient criteria for this 

rhombohedral I compound, as given in Equation (12), are satisfied. This compound is therefore mechanically 

stable. The sufficient Born criterion for an orthorhombic system [28], with 9 independent elastic constants is:  

𝐶11𝐶22𝐶33 + 2𝐶12𝐶13𝐶23 − 𝐶11𝐶23
2 − 𝐶22𝐶13

2 − 𝐶33𝐶12
2 > 0.     (13) 

Using the results shown in Tables 2, we find that the elastic constants for C5B3, which has an orthorhombic 

bravais lattices, satisfy the sufficient Born stability condition given by Equation (13). It follows that this 

materials is mechanically stable. The variation of the bulk, shear and Young moduli as a function of the values of 

x in C8-xBx materials is represented graphically in Fig. 2. 

 

 
 

Fig. 2. Graph for the trend in bulk, shear and Young moduli in C8-xBx materials. 

 

It is seen in Fig. 2 that the values of the three moduli reduce with increasing boron content. The ratio of B/G can 

be used to determine the brittleness of a material. Push [31] reports that B/G=1.75 is a critical value for 

distinguishing between ductility and brittleness, for ductile materials, B/G>1.75. Brittle materials have values of 

this ratio which are less than 1.75. As seen in Table 3, the four materials under study are all brittle with diamond 

being the most brittle. C3B and C5B3 are the least brittle with a B/G value of 1.32.  While the Young modulus 

relates the stress to the resulting strain in the same direction, the Poison ratio relates the lateral strain to the axial 

strain. The ratio not only reflects the volume change of the material in the case of uniaxial deformation, but also 

reflects the stability of a crystal to resistant shear. The higher the Poisson ratio, the greater the plasticity of a 

material. The results in Table 3 indicate that the plasticity of the materials increases with increased boron 

content.We  see in Table 4 that diamond has the lowest degree of anisotropy with a Universal Elastic Anisotropy 

Index of only 0.041. C5B3 has the highest anisotropy (AU = 1.160), this material is therefore likely to be the most 

-1 0 1 2 3 4
0

200

400

600

800

1000

1200

M
od

ul
us

,(
G

Pa
)

Moduli versus C8-xBx Structural Phases

C

C7B C3B C5B3

Young

Shear

Bulk

Value of x in C8-xBx



 

 

 

 

 

 

susceptible to microcracks. The table shows that BV = BR for the two cubic structures, C and C7B as expected. 

Interestingly, the same condition is observed for C3B which is not cubic, indicating that this material is also 

isotropic in terms of the linear bulk modulus alone. 

5.  Conclusion 
The first paragraph after a heading is not indented It has been determined that the the four materials: diamond 

(C), cubic C7B (c-C7B), rhombohedral C3B (r-C3B) and orthorhombic C5B3 (o-C5B3) are all dynamically and 

mechanically stable. On the basis of the bulk modulus results shown in Table 3, these compounds could 

potentially have super-hard characteristics; their respective values of the bulk modulus exceeding 250 GPa as is 

expected in super-hard materials [9]. Fig. 2 suggests that the hardness reduces with increasing boron content. As 

seen in Table 3, the materials under study are all brittle with diamond being the most brittle. C3B and C5B3 are 

the least brittle with B/G values of 1.32. Table 3 shows that diamond has the lowest degree of anisotropy with a 

Universal Elastic Anisotropy Index of only 0.041 while C5B3 has the highest anisotropy (AU = 1.160), which 

makes the latter material more susceptible to microcracks. 
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