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Abstract. In this work, we look at the cosmological constraints of some f(R)-modified gravity
models such as f(R) = βRn (a toy model) and more realistic ones like the Starobinsky
and Hu-Sawicki models. We use 236 intermediate-redshift and 123 low-redshift Type 1A
Supernovae data obtained from the SDSS-II/SNLS3 Joint Light-curve Analysis (JLA), with
absolute magnitudes, for the B-filter, found on the NASA Extragalactic Database (NED). We
then develop a Markov Chain Monte-Carlo (MCMC) simulation to find the best fit (firstly
to the ΛCDM model), to obtain the cosmological parameters (Ωm and h̄). We then use the
concordance model results to constrain the priors for the f(R)-gravity models on the MCMC
simulation. We assume a flat universe Ωk = 0 and a radiation density Ωr that is negligible in
both the ΛCDM model and f(R)-gravity models. Thus, the only difference between the ΛCDM
model and f(R)-gravity models will be dark energy and the arbitrary free parameters. This will
tell us if there exist viable f(R)-gravity models when we compare them to the results of the
ΛCDM model and thus constrain the generic f(R)-gravity models with cosmological data.

1. Introduction
Since the theory of General Relativity (GR) was proposed by Einstein in 1915, it has developed
into the accepted theory to explain gravity. GR is a generalization of Newtonian gravity in the
presence of extreme gravitational fields. The reason behind the acceptance, among others, was
due to the discovery by Hubble in 1929 that the Universe is expanding. GR was able to explain
this discovery, and this led to the Hot Big Bang theory model, which uses GR as the physical
basis. With the observational discovery in more recent times that the expansion of the Universe
is accelerating, which is not in line with GR predictions, the Hot Big Bang model had to be
improved. An unknown pressure force acting out against gravity, dubbed “dark energy” was
added to explain why gravity on cosmological scales is not able to slow down the expansion.

The cosmological field equations in standard cosmology are derived by the using variational
principle on the Einstein-Hilbert action

A =
c4

16πG

∫
d4x
√
−g
[
R+ 2(Lm − Λ)

]
, (1)

where Λ is the cosmological constant representing the “dark energy” pressure force, and Lm is
the standard matter Lagrangian [1]. These field equations are given by

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2)

where Rµν and R are the Ricci tensor and Ricci scalar respectively, gµν is the metric tensor and
Tµν represents the energy-momentum tensor. The two most important cosmological equations in
Eq. (2) are the Friedmann equations (we assume that in the geometric unit system c = 1 = 8πG),



which in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime metric read[
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where a(t) is the scale factor (describing the relative size of the Universe at a certain time), ρ(t)
is the energy density, P (t) is the isotropic pressure, and κ is the 3D (spatial) curvature. To close
the above system of expansion equations, we relate ρ and P through the equation of state

P (t) = ωρ(t) , (5)

where we assume a perfect-fluid system with a constant equation of state parameter ω.

1.1. Problems faced by GR and proposed solutions ∼ f(R)-gravity
The Friedmann equations are used to mathematically describe the Big Bang theory and the on-
going expansion (with the inclusion of dark energy to explain the late-time acceleration) of the
Universe. The inclusion of dark energy provides one of the problems faced by the ΛCDM model,
since dark energy is an unknown pressure force acting out against gravity, but have been shown
to make up ∼ 68% of the Universe, [2]. Furthermore, an early-time accelerated expansion, called
the inflation period, added other problems to the ΛCDM model such as the horizon problem
and the coincidence problem. Other arising problems faced by the ΛCDM model also include
the Magnetic monopole problem (none has been found) and the Universe’s matter/anti-matter
ratio, which is expected to be equal to 1, but is close to zero [3].

Due to the problems faced by the ΛCDM model, there exist proposed solutions in the form
of modified gravity models. In some of these modified theories, you may add extra fields or
go to higher dimensions. We will be looking at a higher-order derivative theory, called f(R)-
gravity model. For these models, the modification occurs when changing the Ricci scalar in
the Einstein-Hilbert action (1) to a function of the Ricci scalar, namely f(R). Re-deriving the
Einstein field equations, we obtain

f ′(R)Rµν + gµν�f
′(R)−∇µ∇νf ′(R)− 1

2
gµνf(R) = Tµν , (6)

where � = ∇σ∇σ is the covariant d’Alembert operator. As you will notice in equation (6),
we do not have a dependency on the cosmological constant, since this modified theory tries to
explain the accelerated expansion without the inclusion of dark energy. We can then re-derive
the Friedmann equations for f(R)-gravity, and obtain[
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2. Supernovae Type 1A data and MCMC simulations
2.1. Distance modulus
To test the f(R) Friedmann equations (7), we use Supernovae Type 1A data. The reason for
this is due to the fact that Type 1A Supernovae (White Dwarf (WD) accreting a low mass
companion star) are regarded as standard candles, since their luminosities can be calibrated,
due to light-curve correlations between width and amplitude, to be similar to one another [4].



This would mean that the measured flux is only dependent on the distance to supernovae and
not the composition or mass of the WD. We will use redshift to approximated the distance.
Thus, an expanding universe, where the distance to the supernovae is changing, can be used
to find the best fitting distance modulus for our Friedmann equation. For simplicity, we will
assume a flat universe Ωk = 0, with a negilible radiation density Ωr ≈ 0 [2].

We will be using data obtained from SDSS-II/SNLS3 Joint Light-curve Analysis (JLA). From
that particular dataset, we will use 123 are low-redshift supernovae with a redshift between
0.01 < z ≤ 0.1 and 236 supernovae with an intermediate redshift between 0.1 < z ≤ 1.1. The
reason we will using low-redshift data, is due to the fact that we will be testing the model for a
late-time acceleration, thus a redshift below ∼ 0.5. Furthermore, we will be using the calculated
absolute magnitudes of these supernovae for the B-filter, that can be found in [5, 6, 7].

The distance modulus can be derived from the luminosity distance DL, which relates two
bolometric quantities, namely the luminosity L and the flux f of the distant supernovae. We
can then relate DL to the transverse comoving distance, by using redshift and obtaining

DL = (1 + z)DM . (8)

By using the conditions for the transverse comoving distance as a function of the curvature of
spacetime density (Ωk) found in [8], we can determine that DM = Dc, where Dc is the line-of-
sight comoving distance. We also have to define the Hubble distance to be DH = 3000h̄ km

s.Mpc

and h(z) to be the normalized Hubble parameter in terms of redshift. By using the definition of
the distance modulus (in Mpc), and the aforementioned different distance definitions, we obtain

µ = m−M = 25− 5× log10

(
3000h̄−1(1 + z)

∫ z

0

dz′

h(z′)

)
, (9)

wherem is the apparent magnitude andM is the absolute magnitude of the measured Supernovae
[6]. This method is called supernova cosmology [9].

2.2. Markov Chain Monte Carlo (MCMC) simulations
To fit the data to the distance modulus, we will use MCMC simulations. The MCMC simulation
is able to search for the most probable free parameter value, given certain physical constrains.
It starts searching at some initial given value, by calculating the likelihood of the distance
modulus. It then takes a random step for each parameter in the parameter space away from
the initial values. Then it calculates the likelihood for all possible combinations between the
initial parameter values and the new parameter values to find the combination with the largest
likelihood of occurring. The simulation then finds an acceptance ratio between the initial
parameter values and the new largest likelihood combination parameter value. Using the new
information on the best combination, it repeats the steps until it converges to the most probable
best fit parameter values. We will use the EMCEE Hammer Python package to execute the
MCMC simulation. This package uses different random walkers, each starting at a different
initial parameter value and each converging on the most probable parameter values1.

3. Results
3.1. Concordance model ∼ ΛCDM model
We use the ΛCDM model to calibrate our MCMC simulation. We will use the ΛCDM model as
the “true” model to which we can compare the f(R)-gravity models against, to find if they are
viable for being alternative models. We assume a flat universe Ωk = 0, as well as, neglecting the
radiation density of the Universe, since the expected value is in the range of Ωrh

2 = 2.47× 10−5

1 This entire section including the MCMC simulation code is similar to work done in the conference proceedings
paper by [10], where they used the code developed in the masters dissertation [11], which this paper is based on,
to test their model. The final results of this proceedings are published in [12]



[13] (they assumed h = 0.73). Using these assumptions, we obtain a Friedmann equation in
terms of redshift as

h(z) =
√

Ωm(1 + z)3 + 1− Ωm, (10)

where h(z) = H(z)
H0

is dimensionless parameter, and making the substitution ΩΛ = 1−Ωm. When

we execute the MCMC simulation for the ΛCDM model, we obtain the results in Figure (1).

Figure 1. MCMC simulation results (Panel: 1) and the corresponding model fitted to the
Supernovae Type 1A data obtained from JLA (Panel: 2). Furthermore, the residuals between
the model prediction and the actual data points are also shown (Panel: 3).

From Figure (1), we can confirm that the MCMC simulation works, even though the predicted
parameter values are not within 1σ from the Planck2018 results (blue line in Panel: 1), that
were found to be Ωm = 0.315 ± 0.007 and H0 = 67.4 ± 0.5km.s−1.Mpc−1 [2]. The reason for
this is due to the Planck results being determined on Cosmic Microwave Background (CMB)
radiation data, and it has been shown that the Supernovae Type 1A data predicts a higher
Hubble constant value than the CMB results, namely H0 = 73.24 ± 1.74km.s−1.Mpc−1 [14]
(they used a different calibration method). So our results, where we used previously calculated
absolute magnitudes, therefore not needing to calibrate the distance modulus as they have done
in [14], we were able to find a best-fitting H0 closer to the CMB results [2], even though we were
not able to remove the discrepancy.

3.2. f(R)-gravity model results
Since Figure (1) confirmed that our MCMC simulation works, we can go ahead and test different
f(R)-gravity models in a similar fashion as done for the concordance model. Thus, we derive a
distance modulus equation for each of the chosen f(R)-gravity models. These models include 2
toy models (f(R) = βRn and f(R) = αR + βRn), the Starobinsky model and the Hu-Sawicki
model, where the latter 2 models are considered as the more realistic models:

• f(R) = R+ βRc

[
(1 + R2

R2
c

)−n − 1
]

-Starobinsky model,

• f(R) = R− αRc
[ (

R
Rc

)n
1+
(

R
Rc

)n]- Hu-Sawicki model.

We use the best-fit parameter values for the ΛCDM model to set appropriate priors for the f(R)
models, to ensure that the resulting cosmological values are close to those found by the ΛCDM
model. The best-fit model results (without the MCMC results) are shown in Figures 2 - 5 in
the same order as given above. The Starobinsky and Hu-Sawicki model results are preliminary
due to having non-solvable Friedmann equations (executing a numerical method). We will only
be able to compare the Starobinsky and Hu-Sawicki models to the literature. In the paper



by [15], they found the cosmological parameters for these two models to be Ωm = 0.269+0.050
−0.042,

h̄ = 0.714+0.030
−0.028 and Ωm = 0.264+0.059

−0.055, h̄ = 0.722+0.042
−0.033, respectively.

Figure 2. First toy model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.285+0.082

−0.105, h̄ = 0.665+0.054
−0.045, and q0 = −0.011+0.001

−0.002. The f(R)-model

free parameter values are β = 2.687+0.968
−0.999 and n = 1.270+0.000

−0.000.

Figure 3. Second toy model’s best fit (n = 2 and the (-) solution) to the Supernovae Type
1A data, with cosmological parameter values Ωm = 0.249+0.102

−0.101, h̄ = 0.638+0.046
−0.027, and q0 =

−0.575+0.040
−0.046. The f(R)-model free parameter values are α = 19.642+2.967

−1.753 and β = 0.903+0.070
−0.107.

Figure 4. The Starobinsky model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.238+0.089

−0.087, h̄ = 0.683+0.026
−0.024, and q0 = −0.494+0.298

−0.278. The f(R)-model

free parameter values are β = 4.588+3.668
−2.683 and n = 3.493+3.705

−2.057.

4. Conclusion
From these results, we can see that these models do fit the data, although each model has a
disadvantage in some sense. In the first toy model, the predicted cosmological values are close to
the Planck2018 results [2], thus minimizing the discrepancy between CMB and Supernovae Type



Figure 5. The Hu-Sawicki model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.213+0.076

−0.038, h̄ = 0.688+0.024
−0.024, and q0 = −0.538+0.144

−0.179.The f(R)-model free

parameter values are α = 4.823+0.070
−0.092, β = 5.012+0.087

−0.087, and n = 3.500+0.038
−0.049.

1A results, but struggled with predicting the period before the acceleration started (z > 0.5),
as well as with the deceleration parameter value (q0) that is expected to be close to ∼ −0.5
based on observations. The second toy model fitted the data better, but gave a Hubble constant
that is lower than any observed value. The Starobinsky and Hu-Sawicki models (preliminary
results) found realistic Hubble constant values compared to the CMB observations, but in both
cases found matter densities that were lower than observations suggest. Both of these also gave
deceleration parameters close to the expected values.

Future work will include doing a statistical analysis on each individual best-fit values by
calculating the χ2-value. Furthermore, we will also calculate the AIC and BIC criterion values
of each for the f(R)-gravity models and compare them to the ΛCDM model to check if some
of these f(R)-gravity models are cosmologically viable alternatives or not. With the statistical
analysis results, we will be able to see whether or not a particular model is viable for further
testing on various different data sets, such as the CMB data. This will enable us to obtain a
better insight into these models and whether or not the can be considered to be alternative
models to avoid the dark energy problems.
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