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Abstract. We consider the dissipative dynamics of a spinless electron (fermion) strongly
interacting with a finite bath of fermions. The fermionic environment is embedded in a bosonic
Markovian bath. The master equation for the fermion interacting with the fermionic bath is
derived. Based on the master equation for this system, the reduced dynamics and thermalization
of the spinless electron is studied.

Understanding thermalization in complex quantum systems plays an important role in
modern quantum statistical physics. The description of the mesoscopic system is important
from both the experimental and the theoretical points of view. Recently, there has been a
lot of interest in modeling steady state transport through quantum dots [1, 2, 3]. Typically,
electrons in the quantum dot strongly interact with electrons in the surroundings (finite number
degrees of freedom). In order to describe the interaction of the electron with the environment
of electrons without restrictions on the strength of the electron-electron interactions we embed
the whole system into a bosonic Markovian bath which will thermalize the subsystem of the
electron interacting with the bath of electrons. In the present work we will not consider the
spin-spin interaction between electrons, so that we will describe all electrons in this model as
spinless fermions.

The studied system consists of a fermion interacting with a mesoscopic fermionic bath which
is embedded into a Markovian bosonic bath. The total Hamiltonian of the system reads,

H = HS +HB +HSB, (1)

where HS is the Hamiltonian of a fermion interacting with fermionic bath, i.e.,

HS = ωd†d+

N∑
i=1

(
εc†ici + gdc†i + gd†ci

)
, (2)

where d†, d are creation and annihilation operators of the fermion of interest and c†i , ci are

creation and annihilation operators of fermions in the mesoscopic bath. All the operators d†, c†i
satisfy standard anticommutation relations. The Hamiltonian of the bath HB reads,

HB =
∑
n

ωnb
†
nbn, (3)



where b†n, bn are standard bosonic creation and annihilation operators. The Hamiltonian of
interaction of the fermonic bath with the bosonic Markovian environment is denoted by HSB

and given by,

HSB =
N∑
i=1

∑
n

gnbnc
†
i + g∗nb

†
nci. (4)

In order to derive the quantum master equation for the system it is convenient to diagonalize
the Hamiltonian of the system HS , as

HS =
N∑
i=0

λiξ
†
i ξi, (5)

where ξ†i , ξi are creation and annihilation operators of a new set of quasi-fermions satisfying

standard anti-commutation relationships, i.e., {ξi, ξ†j}+ = δi,j . The explicit expressions for ξ†i
and λi read,

ξ†0 = cos θd† +
sin θ√
N

N∑
i=1

c†i , λ0 =
ω + ε

2
+

ΩN

2
, (6)

ξ†1 = − sin θd† +
cos θ√
N

N∑
i=1

c†i , λ1 =
ω + ε

2
− ΩN

2
, (7)

and for i = 2 . . . N

ξ†i =
1√

i(i− 1)

i−1∑
k=1

c†k −
√
i− 1

i
c†i , λi = ε, (8)

where the coefficients ΩN , cos θ, sin θ read,

ΩN =
√

4g2N + (ε− ω)2, cos θ =
2g
√
N√

ΩN (ΩN + (ε− ω))
, sin θ =

√
ΩN + (ε− ω)

2ΩN
. (9)

Using the explicit expression for the diagonalized Hamiltonian of the system, the quantum
Markov equation can be obtained from the general expression [4],

d

dt
ρS(t) = −

∫ ∞
0

dτTrB[H
(I)
SB(t), [H

(I)
SB(t− τ), ρS(t)⊗ ρB(0)]]. (10)

By the direct substitution of the interaction Hamiltonian into Eq. (10) and assuming that
|λ0 − λ1| � 1 (this holds for N � 1), we obtain the following quantum master equation,

d

dt
ρS =

1∑
i=0

γ+i

(
ξiρSξ

†
i −

1

2
{ξ†i ξi, ρS}+

)
+ γ−i

(
ξ†i ρSξi −

1

2
{ξiξ†i , ρS}+

)
, (11)

where the damping rates γ±i are given by,

γ±0 = πN sin2 θJ(λ0)

(
coth

βλ0
2
± 1

)
, (12)

γ±1 = πN cos2 θJ(λ1)

(
coth

βλ1
2
± 1

)
, (13)



where J(ω) is the spectral density and β is the inverse temperature of the bosonic Markovian
bath.

The obtained quantum master equation can be solved exactly and its solution can be
presented with help of the Kraus representation,

ρS(t) =
1∑

i=0

4∑
k=1

Ei
k(t)ρS(0)Ei†

k (t), (14)

where the Kraus operators are given by

Ei
0(t) =

cosαi√
2

(
ξ†i ξi + fi(t)ξiξ

†
i

)
, (15)

Ei
1(t) =

cosαi√
2
gi(t)ξ

†
i , (16)

Ei
2(t) =

sinαi√
2

(
ξiξ
†
i + f∗i (t)ξ†i ξi

)
, (17)

Ei
3(t) =

sinαi√
2
gi(t)ξi, (18)

and

cosαi =

√
γ−i

γ+i + γ−i
, sinαi =

√
γ+i

γ+i + γ−i
, (19)

fi(t) = exp

(
−
γ+i + γ−i

2
t− iλit

)
, gi(t) =

√
1− |fi(t)|2. (20)

In the present work we will consider that initially there is a fermion of interest and no fermions
in the mesoscopic bath, i.e.,

ρS(0) = d†|0〉〈0|d = cos2 θξ†0|0〉〈0|ξ0+sin2 θξ†1|0〉〈0|ξ1−sin θ cos θ
(
ξ†1|0〉〈0|ξ0 + ξ†0|0〉〈0|ξ1

)
. (21)

Using the explicit form of the Kraus operators and the initial conditions for the system, the
density matrix can be obtained in the quasi-fermionic picture. After transformation to the
original fermionic picture and tracing out the mesoscopic bath we obtain the explicit expression
for the reduced dynamics of the electron of interest,

ρe(t) = κ(t)d†|0〉〈0|d+ (1− κ(t))|0〉〈0|, (22)

where
κ(t) = cos2 θc00(t) + sin2 θc11(t) + sin2 θ cos2 θRe (f0(t) + f1(t)) + w(t), (23)

c00(t) =
cos2 θ

2

(
cos2 α0 + cos2 α1|f1(t)|2 + sin2 α0|f0(t)|2 + sin2 α1

)
, (24)

c11(t) =
cos2 θ

2

(
cos2 α1 + cos2 α0|f0(t)|2 + sin2 α1|f1(t)|2 + sin2 α0

)
, (25)

w(t) =
1

2

(
cos2 α0 sin2 θg20(t) + cos2 α1 cos2 θg21(t)

)
. (26)

Based on the exact expression for the reduced density matrix we calculate the mean number
of fermions, and it is clear that 〈d†d〉 = κ(t).



Figure 1. Time dependance of the mean number of fermions as a function of coupling strength
to the mesoscopic bath. Curves (a), (b) and (c) correspond to 0.01, 0.1 and 1 values of the
coupling strength g, respectively. The rest of the parameters are chosen to be the same for all
three curves: ε = 1, ω = 1.3, N = 200, J(λ0)=J(λ1)=0.01 and β = 10.

Figure 2. Time dependance of the mean number of the fermions as a function of the number of
fermions in the mesoscopic bath. Curves (a), (b) and (c) correspond to 200, 100 and 20 number
of fermions in the mesoscopic bath (N), respectively. The rest of the parameters are chosen to
be the same for all three curves: ε = 1, ω = 1.3, g = 0.5, J(λ0)=J(λ1)=0.01 and β = 10.

In Fig. 1 and Fig. 2 the dynamics of the mean number is shown. In Fig. 1 we analyze



different regimes of the interaction between fermion and meso-reservoir of fermions. It is clear
that in the weak coupling case (Fig. 1a) Markovian dissipation is observed, however, increasing
the interaction strength (g) (Fig. 1b, Fig. 1c), the process of thermalization shows clear signs
of non-Markovian behaviour. In Fig. 2 we analyze the influence of the number of fermions in
the mesoscopic bath on the dynamics of the fermion. It is clear from the Fig. 2 that decreasing
the number of fermions strongly influences the frequency of oscillations (∼

√
N).

In conclusion, we derive and solve analytically the quantum master equation for the spinless
electron interacting with a mesosopic bath of spinless electrons with restrictions on the system-
bath interaction. We further analyze the dynamics of the reduced system. In the future we plan
to take into account spin-spin interactions and consider more general initial conditions.
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