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Abstract. It is shown that when a circular current is resolved into merged distributions of
distinct Cartesian x and y component line current elements, each distribution is a complete
magnetic dipole that selectively creates like Cartesian components of the magnetic torque and
azimuthal magnetic vector potential, plus only the magnetic field’s other Cartesian
components. All these are expressible in terms of a distribution’s own magnetic dipolar
moment, which is traditionally attributed to the whole circular current. In contrast a simple
electric dipole aligned on the z-axis, creates its x and y electric torque components, its full
cylindrically symmetric electric field and the electric scalar potential, all of which are
expressible in terms of the sole electric dipolar moment. Each magnetic or electric Cartesian
torque component is expressible as a cross product of a distribution’s dipolar moment and one
Cartesian field component parallel to an exclusive Cartesian plane perpendicularly bisecting
the mutually parallel intra-dipolar displacements, while the distribution’s corresponding
potential vanishes in that plane. Under such special conditions, tradition compares one
surviving Cartesian component of the magnetic torque or of the magnetic vector potential to
respectively the electric dipole’s combined x and y torque components or the whole scalar
potential. Seemingly from this and the equality of the magnetic dipolar moments of the two
component distributions of the cylindrically symmetric circular current, tradition incorrectly
defines either of these magnetic dipolar moments as that of the entire circular current.

1. Introduction

As a follow up on the earlier paper [1], we show that the traditional analogy of the magnetic dipolar
structure of a circular current to that of a simple electric dipole consisting of separated electric scalar
charges of identical size but opposite signs has many short comings. This is done by evaluating the
dipolar moments, the torques in external fields, the dipolar magnetic vector and electric scalar
potentials and their related magnetic and electric fields. To begin with an electric current element is a
vector resolvable into perpendicular components, unlike an elemental electric scalar charge which can
never be similarly resolved. With respect to their dipolar alignment vectors, magnetic dipolar moments
are normal whereas electric dipolar moments are collinear. A magnetic torque is a triple vector product
with Cartesian components due to equally perpendicular electric current components. An electric
torque is a duo vector product with Cartesian components due to the same electric scalar charge.

Here an elemental current is depicted as an elemental magnetic vector charge since this is more
consistent with its nature when contrasted with the elemental electric scalar charge as sources of
respective magnetic vector and electric scalar potentials and related fields.



2. Moments of and torques on Cartesian magnetic and electric dipoles
Onacircle of radius p lying in the xy-plane and centred at the origin O in figure 1(a), an azimuthal

line elemental magnetic vector charge at point P; in the j™ quadrant is
dQ, = 1,100, = ;luyp dg; = (~Xsing, +Ycosg; Nuop dg;, 1=1,2,3,4 (1)
where (])j I 14, is the line magnetic vector charge density and ¢; =@+ % (j —1), as the position vector

p; isatanangle 0 <¢ <7 to the x-axis. Hence the Cartesian magnetic vector charge components are

dQ; =+XdQ, =+Xly,psing dé (2a)
dQ; =+JdQ, =*Jlu,pcosg dg (2b)
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Figure 1. Pairing separated elemental entities (same magnitude, opposite sign) into dipoles: (a)
Cartesian magnetic vector charges on a circle and (b) electric scalar charges on a z-axis.

Pairing the Cartesian components at P, with the matching but oppositely directed components at P,
and P, constitutes the a and b Cartesian elemental magnetic dipoles.

While in figure 1(b) at the points P, and P_, of axial position vectors z, =+77 and Z_ =-72
on the z-axis, the line elemental electric scalar charges (forming an elemental electric dipole) are
+dq=+Adz and —dg=-1dz (2c)

Here A is the magnitude of the electric scalar line charge density.
The two magnetic elemental dipoles and the one electric elemental dipole have dipolar moments of

dm, =dm, +dm, =p;pxXdQ, +p,px(-XdQ,) =s, xXdQ, =2dm, (3a)



dm, =dm, +dm, =p,pxydQ, +p,px(-ydQ,) =s, xydQ, =2zdm, (3b)

dp=dp, +dp_=2zzdq+ (-zz)(-dq) =s,dg=Zzdp (3c)
where their intra dipolar displacements or dipolar orientation vectors in Cartesian directions are
s, =-VYs, =-Y2psing S, = XS, =X2pCos¢ s, =25, =222 (4)

The (sub) subscripts + and — in (3a) to (3c), and in subsequent discussions below, signify entities due
to opposing individual elemental vector or scalar charges, that is, monopolar contributions.
Integrating (3a) and (3b) from ¢ =0 to ¢ =z and (3c) from z =0 to z =z yield the moments:

m, =Zu,lzp? =Zm, m, =Zu,lzp* =Zm, p=2Az=ip (5
Thus the overall magnetic dipolar moment m =m, +m, = 22u,lzp? is twice the traditional value

for a circular current [2—8], which would be Euolnpz in the Kennelly convention. Note the similarity

in the three distinct moments in (5), each involves an apparent area vector, existent or nonexistent.

In external magnetic H and electric E fields the Cartesian elemental magnetic and electric
dipoles are characterized by paired magnetic forces J_rdFma, J_rdFmb and electric forces £dF,. As
coupled moments of the forces acting on the elemental dipoles, the magnetic and electric torques are:

dr, =dr, +dr, =s,xdF, = -ys, x ()A(an X H)= -ys, x (2anH , —ydQ,H Z) (6a)
dr, =dr, +dr, =s,xdF, =+%s, x(ydQ, x H)=+%s, x(XdQ,H, - 2dQ,H, ) (6b)
dt, =dr, +dr, =s,xdF, =Zs, x (dgE)=2s, x (2quz +YydgE, + quEX) (6¢)
Note the triple vector products in (6a) and (6b), and the duo vector product in (6¢). The Cartesian
components of the torques become
dr, =dt,=2s,dQ,xyH, = s, ><)A(an}><§/Hy =dm,_xyH, #dm_ xH

dr,, =dr, =25,dQ, x%H, =15, x§dQ, }x&H, =dm, xXH, #dm, xH
dr,, =2s,dgxyE, = {s,dqjxyE, = dpxyE, # dpxE 0
dr, =75, dgxXE, = {s,dgq}xXE, = dpxXE, # dpxE

Note the matched inequalities. Using (5), the overall magnetic and electric torques become
T,=T,+1, =M, xJH, +m, xXH, =2m, x(pH +2H,)=m, xH =m xH ®)
T,=17, +1, = PxJE, + pxXE, = 2px(pE,+ZE,) = pxE #2pxE 9)

Thus the traditional choice [2-8] of m, or m, as the total magnetic dipolar moment is unjustified.
The inequalities in (8) and (9) nullify the traditional analogy between magnetic and electric torques.

3. Dipolar magnetic vector and electric scalar potentials and associated fields
When the magnetic vector and electric scalar charge distributions in figure 1 are the sources of
magnetic vector and electric scalar potentials, as well as the associated magnetic and electric fields at a
field point P, the charges and their positions are signified by primed symbols. Thus, in figure 2 the
field point P in a zp-plane is at position r=rr from the origin O and its displacements from the

source elemental Cartesian magnetic vector charges at points P;, j=1,2,3 on the circle are
R,=R,R, =R, fir=R,[l+n, fr=r—p, =fr—p'p'=22+pp-p,p’, j=123  (10)
where p =rsin@ and the geometrical factor f; (or n;)isafunctionof r, 6, ¢, p', ¢". Similarly in

figure 3, displacements of the field point P from the electric scalar charges +dq’ and —dq" at P!
and P’ on the z-axis are



7
P
A A \\)
Z l \\ |
oA\
| |
-0
|
|
i
|
|
R N
NS S S |
P' ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
ol AT o i
(p ,,,,,,,,,,,,,,,,,,,,,,,, '/, - / g ) y
™ P, Ny !
. : 4 i
ps , .
T ” == IN
o\e T
,I \\\ 1 ‘ - - e
, | \ ‘:A ‘/‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p?/ /¢’ ) \‘ ///’ ................................
U\ :
’ Pl
P, "

Figure 2: A field point P in a zp-plane and magnetic source points P/, P,, P;, P, on an xy-circle.

R, =R,R, =R, ffr = FAQi(1+ni)% r=r—z, =f(r¥ 15 cos@)i 6%3; sin@ (11)
where s, = 22", with the geometrical factor f, (or 77, ) being a function of r, 6, z" only.
Below, each ensuing first order approximation for p’ <<r or z' << ris after binomial expansion

of fj'% or fi'%, where n =1 for potentials and n =3 for fields, and application of equations (3a) to

(3c). Then the two Cartesian elemental magnetic dipoles on the circle in figure 2 and the electric
dipole on the z-axis in figure 3 will generate at P the magnetic vector and electric scalar potentials

1 1\ XdQ! . . s.dQ; " . . dm/
dA, =dA, +dA, =(f3 :—f, 2) Q: ~—Xsingsin 0"‘—Qa2 =-—Xsin¢sin - (12a)

A, r Arpr Arpgt

1 _1\ydQ, . . s,dQ; . . dm,
dA, =dA. +d =\f, -, —=x+ycos¢@sin 0 —=—2 =+ycos¢gsind ——— (12b
A b A (l 2 )47w0r yeos¢ 47wor2 yeos¢ 47wor2 (120)

!

av=av, +av =(7 17} 99 <oosp =0T _cosp P

(12c)
4e,r Ame,r Are,r

2

Integrating and changing from Cartesian to spherical unit vectors shows that each of A, and A,
varies with ¢, but V does not:

A, = [— (fsin 0+ ﬁcose)sin $COS¢ + Psin? ¢]w

> (13a)
TN g



o A . N m,’sin
A = [+ (rsm0+9c030)3|n $COSp+PCos® ¢ b—f (13b)

Ay, ¥
voP cosf (13¢)

Ame,r
Due to the equations in (5), the total magnetic vector potential become
. " m, n . ! n . '

A=A, +A, =(-Xsing+Yycos & =¢@sind =@sinfg 14
S+ A =(-Rsing+ ¢)47w0r2 bsing e =hsing (14)

Figure 3: A field point P in a zp-plane or ré-plane and electric source points P;, P’ ona z axis.
Similarly, the fields at point P due to the two distinct Cartesian elemental magnetic dipoles in

figure 2 and the electric dipole in figure 3 are

dH, =dH, +dH, =99 (R 1,7 -R,1,?)

a

Az r
o (15a)
z[93sin¢cosesin0+2(1—3sin2¢sin20)] S, Q
Amptor®
dH, =dH, +dH, = 9% (R 17 R, 17
47[/10
' (15b)
z[§<SCos¢cosesin0+2(1—30032¢sin20)]S 2
Arptor®
dE=dE, +dE =29 (R, 1R, f)=(f2c0s0+dsing) =0 (15¢)

Are,r : . Are,r



Integrating (15a) to (15c¢), and transforming unit vectors from Cartesian to spherical systems shows
that both H, and H, vary with ¢, but E does not:

H, =[Fcose+§(3sin2¢—1)sin0+(}>3cos¢sin¢cosesin0] M, - (16a)
Ampyr
[A -~ 2 . ~ . . mb,
H, = rcos(9+0(3cos ¢—1)3|n0—q>3cos¢sm ¢cos(93|n0] 3 (16b)
Ampyr
E = (F2c0s0 + 0sin0) P - (16¢)
Are,r

Then as m, =m, (equations 5), the overall magnetic field acquires cylindrical symmetry when
expressed exclusively in terms of either m_ or m, :

H=H, +H, =— 2 (of cos 0+ Bsin )= — (2 cos 6 + bsin0) (17)
Arpior Ayt
Clearly the similarity between (15c) and (17) cannot justify the tradition [2-8] of taking m. or m,

as the circular current’s only magnetic moment. Again the traditional analogy fails.

4. Conclusions

It has been shown that traditional analogies between the structures and torques of electric and
magnetic dipoles are deceptively erroneous. A circular current is resolvable into merged distributions
of distinct Cartesian x and y component line current elements, each distribution being a complete
magnetic dipole that selectively creates like Cartesian components of the magnetic torque and
azimuthal magnetic vector potential, plus only the magnetic field’s other Cartesian components. All
these are expressible in terms of a distribution’s own magnetic dipolar moment, which is traditionally
attributed to the whole circular current. In contrast a simple electric dipole aligned on the z-axis,
creates its x and y electric torque components, its full cylindrically symmetric electric field and the
electric scalar potential, all of which are expressible in terms of the sole electric dipolar moment.
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