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Abstract. It is shown that when a circular current is resolved into merged distributions of 
distinct Cartesian x and y component line current elements, each distribution is a complete 
magnetic dipole that selectively creates like Cartesian components of the magnetic torque and 
azimuthal magnetic vector potential, plus only the magnetic field’s other Cartesian 
components. All these are expressible in terms of a distribution’s own magnetic dipolar 
moment, which is traditionally attributed to the whole circular current. In contrast a simple 
electric dipole aligned on the z-axis, creates its x and y electric torque components, its full 
cylindrically symmetric electric field and the electric scalar potential, all of which are 
expressible in terms of the sole electric dipolar moment. Each magnetic or electric Cartesian 
torque component is expressible as a cross product of a distribution’s dipolar moment and one 
Cartesian field component parallel to an exclusive Cartesian plane perpendicularly bisecting 
the mutually parallel intra-dipolar displacements, while the distribution’s corresponding 
potential vanishes in that plane. Under such special conditions, tradition compares one 
surviving Cartesian component of the magnetic torque or of the magnetic vector potential to 
respectively the electric dipole’s combined x and y torque components or the whole scalar 
potential. Seemingly from this and the equality of the magnetic dipolar moments of the two 
component distributions of the cylindrically symmetric circular current, tradition incorrectly 
defines either of these magnetic dipolar moments as that of the entire circular current. 

1.  Introduction 
As a follow up on the earlier paper [1], we show that the traditional analogy of the magnetic dipolar 
structure of a circular current to that of a simple electric dipole consisting of separated electric scalar 
charges of identical size but opposite signs has many short comings. This is done by evaluating the 
dipolar moments, the torques in external fields, the dipolar magnetic vector and electric scalar 
potentials and their related magnetic and electric fields. To begin with an electric current element is a 
vector resolvable into perpendicular components, unlike an elemental electric scalar charge which can 
never be similarly resolved. With respect to their dipolar alignment vectors, magnetic dipolar moments 
are normal whereas electric dipolar moments are collinear. A magnetic torque is a triple vector product 
with Cartesian components due to equally perpendicular electric current components. An electric 
torque is a duo vector product with Cartesian components due to the same electric scalar charge.  

Here an elemental current is depicted as an elemental magnetic vector charge since this is more 
consistent with its nature when contrasted with the elemental electric scalar charge as sources of 
respective magnetic vector and electric scalar potentials and related fields.  



 
 
 
 
 
 

2.  Moments of and torques on Cartesian magnetic and electric dipoles 
On a circle of radius   lying in the xy-plane and centred at the origin O  in figure 1(a), an azimuthal 
line elemental magnetic vector charge at point jP  in the jth quadrant is 

  4 ,3 ,2 ,1    , cosˆsinˆ ˆ 000  jdIdIdd jjjjjjjj  yxφI Q   (1) 

where 0ˆ Ijφ  is the line magnetic vector charge density and )1(2  jj
 , as the position vector 

jρ  is at an angle 20    to the x-axis. Hence the Cartesian magnetic vector charge components are  

  sinˆˆ 0  dIdd ajx
xx  QQ     (2a) 

  cosˆˆ 0  dIdd bjy
yy  QQ     (2b) 

 
Figure 1. Pairing separated elemental entities (same magnitude, opposite sign) into dipoles: (a) 

Cartesian magnetic vector charges on a circle and (b) electric scalar charges on a z-axis. 
 
Pairing the Cartesian components at 2P  with the matching but oppositely directed components at 1P  
and 3P  constitutes the a and b Cartesian elemental magnetic dipoles. 

While in figure 1(b) at the points P  and P , of axial position vectors zzz ˆ  and zzz ˆ  
on the z-axis, the line elemental electric scalar charges (forming an elemental electric dipole) are 

dzdq      and  dzdq     (2c) 
Here   is the magnitude of the electric scalar line charge density.  

The two magnetic elemental dipoles and the one electric elemental dipole have dipolar moments of  
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ẑ

(a)  
(b)  

xx̂
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yŷ  

  

  

  



 
 
 
 
 
 

bbbbbbbb ddddddd mzysyρyρ ˆˆ)ˆ(ˆˆˆ 21 


QQQ mmm   (3b) 

dpdqdqzzdqddd zszzppp ˆ))(ˆ(ˆ e       (3c) 
where their intra dipolar displacements or dipolar orientation vectors in Cartesian directions are 

 sin2ˆˆ yys  aa s    cos2ˆˆ xxs  bb s   zs 2ˆˆ ee zzs   (4) 
The (sub) subscripts   and   in (3a) to (3c), and in subsequent discussions below, signify entities due 
to opposing individual elemental vector or scalar charges, that is, monopolar contributions.  

Integrating (3a) and (3b) from 0  to    and (3c) from 0z  to zz   yield the moments: 
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Thus the overall magnetic dipolar moment 2
02ˆ  Iba z mmm  is twice the traditional value 

for a circular current [28], which would be 2
0ˆ  Iz  in the Kennelly convention. Note the similarity 

in the three distinct moments in (5), each involves an apparent area vector, existent or nonexistent. 
In external magnetic H  and electric E  fields the Cartesian elemental magnetic and electric 

dipoles are characterized by paired magnetic forces 
a

d mF , 
b

d mF  and electric forces eFd . As 
coupled moments of the forces acting on the elemental dipoles, the magnetic and electric torques are: 
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  (6c) 
Note the triple vector products in (6a) and (6b), and the duo vector product in (6c). The Cartesian 
components of the torques become  
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Note the matched inequalities. Using (5), the overall magnetic and electric torques become 
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Thus the traditional choice [28] of am  or bm  as the total magnetic dipolar moment is unjustified. 
The inequalities in (8) and (9) nullify the traditional analogy between magnetic and electric torques.  

3.  Dipolar magnetic vector and electric scalar potentials and associated fields 
When the magnetic vector and electric scalar charge distributions in figure 1 are the sources of 
magnetic vector and electric scalar potentials, as well as the associated magnetic and electric fields at a 
field point P, the charges and their positions are signified by primed symbols. Thus, in figure 2 the 
field point P  in a z-plane is at position rrr ˆ  from the origin O  and its displacements from the 
source elemental Cartesian magnetic vector charges at points 3 ,2 ,1 ,P  jj  on the circle are  
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where  sinr  and the geometrical factor fj (or j ) is a function of r ,  ,  ,  ,  . Similarly in 

figure 3, displacements of the field point P  from the electric scalar charges q d  and q d  at P  
and P  on the z-axis are  



 
 
 
 
 
 

 

 Figure 2: A field point P  in a z-plane and magnetic source points 1P , 2P , 3P , 4P  on an xy-circle. 
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where zs  2e , with the geometrical factor f  (or  ) being a function of r ,  , z  only.  

Below, each ensuing first order approximation for r  or rz  is after binomial expansion 

of 2
n

jf   or 2
n

f 
 , where 1n  for potentials and 3n  for fields, and application of equations (3a) to 

(3c). Then the two Cartesian elemental magnetic dipoles on the circle in figure 2 and the electric 
dipole on the z-axis in figure 3 will generate at P  the magnetic vector and electric scalar potentials  
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Integrating and changing from Cartesian to spherical unit vectors shows that each of aA  and bA  
varies with  , but V  does not:  
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Due to the equations in (5), the total magnetic vector potential become 
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 Figure 3: A field point P  in a z-plane or r-plane and electric source points P , P  on a z axis. 
 

Similarly, the fields at point P  due to the two distinct Cartesian elemental magnetic dipoles in 
figure 2 and the electric dipole in figure 3 are  
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Integrating (15a) to (15c), and transforming unit vectors from Cartesian to spherical systems shows 
that both aH  and bH  vary with  , but E  does not:  
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Then as ba mm   (equations 5), the overall magnetic field acquires cylindrical symmetry when 
expressed exclusively in terms of either am   or bm  : 
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Clearly the similarity between (15c) and (17) cannot justify the tradition [28] of taking am   or bm   
as the circular current’s only magnetic moment. Again the traditional analogy fails. 

4.  Conclusions 
It has been shown that traditional analogies between the structures and torques of electric and 
magnetic dipoles are deceptively erroneous. A circular current is resolvable into merged distributions 
of distinct Cartesian x and y component line current elements, each distribution being a complete 
magnetic dipole that selectively creates like Cartesian components of the magnetic torque and 
azimuthal magnetic vector potential, plus only the magnetic field’s other Cartesian components. All 
these are expressible in terms of a distribution’s own magnetic dipolar moment, which is traditionally 
attributed to the whole circular current. In contrast a simple electric dipole aligned on the z-axis, 
creates its x and y electric torque components, its full cylindrically symmetric electric field and the 
electric scalar potential, all of which are expressible in terms of the sole electric dipolar moment.  
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