
1 
 

Molecular dynamics simulations of bilayer graphene 
structures 

M Shai1, TE Mosuang1, KE Rammutla1 

1. Department of Physics and Geology, University of Limpopo, 
Private Bag x1106, Sovenga, 0727, Polokwane, South Africa 

Moshibudi.shai@ul.ac.za 

Abstract 

In this paper, the formulation of the Tersoff bond-order potential was used to study the 
structural and thermodynamics properties of bilayer graphene (BLG). The simulations were 
performed within a canonical (NVT) ensemble for structural properties and isothermal–
isobaric ensemble (NPT) for thermodynamic properties. Each double layer is a hexagonal 
arrangement of carbon atoms at the corners to make up a two dimensional honeycomb 
sheet. One model consists of 64 carbons (graphene64); the other model has 256 carbon 
atoms (graphene256). Using the structural optimization and radial distribution functions, 
some equilibrium properties of these layered graphene structures are noted. 
Thermodynamic properties will be investigated to understand the behaviour of graphene at 
high temperatures. 

 Introduction 

Graphene has sparked much interest in the field of condensed matter physics. It is 
atomically thin sheet of carbon arranged in a two dimensional honeycomb crystal [1]. The 
existence of graphene has since been explained by the idea that graphene has intrinsic 
roughness. The rippling of graphene makes it to be a nearly perfect two dimensional crystal 
in three dimensional spaces which is not forbidden [2]. Graphene is not only important new 
testing ground for fundamental physics such as relativistic quantum mechanics and low 
dimensional thermodynamics, but also have potential applications to nano-scale technology 
[3]. The carbon-carbon bond length of graphene is 1.42 Å with an interplanar spacing of 3.35 
Å for bilayer graphene. Because of its unique structural, mechanical and electronically 
properties, it has stirred many scientists involved in the field to look forward to making a 
breakthrough in some new research areas. Up to date research has revealed many possible 
applications in solar cell technology [4], sensors, liquid device and the fabrications of 
nanosized prototype transistors [5]. Similar to carbon nanotube [6], graphene is also a good 
candidate for usage as gas sensor materials to detect various molecules, ranging from gas 
phase molecules to some small bioactive molecules [7]. These desirable properties promise 
graphene to offer excellent short-circuit current-gain cutoff frequency for high frequency 
applications. Figure 1 and 2 shows two structures of bilayer graphene64 and bilayer 
graphene256. Both structures were varied at 300 K temperature using DL-POLY software 
and a program that is called a Viewer life. 
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Fig 1: Bilayer graphene 64 atoms                                    Fig 2: Bilayer graphene 256 atoms 

Molecular dynamics 

Molecular dynamics (MD) is a form of computer simulation in which atoms and molecules 
are allowed to interact for a period of time by approximations of known physics, giving a view 
of the motion of the particles. The leapfrog verlet method and Tersoff potential for molecular 
dynamics was used. Leapfrog integration is a simple method for integrating equations, 
particularly in the case of a dynamical system [4]. In this method position (𝑟 ��⃗ ) and force (𝐹⃗) at 
time 𝑡 are needed while the velocities (𝑣⃗) are half a time step behind. We first advance the 
velocities to 𝑡 + ∆𝑡

2
 by 

𝑣⃗(𝑡 + ∆𝑡
2

) =(𝑣⃗𝑡 − ∆𝑡
2

)𝑟(𝑡) + ∆𝑡 𝑓(𝑡)
𝑚

 ,                                                                       (1) 

𝑟(𝑡 + ∆𝑡) = 𝑟(t) +  ∆𝑡𝑣⃗(𝑡 + ∆𝑡
2

),                                                                            (2)  

The velocity equation is executed first and generates a new mid-step velocity. This velocity 
is then used to calculate the new position. The velocity is calculated from 

𝑣⃗(𝑡) = �1
2
� 𝑣⃗ �𝑡 + 1

2
∆𝑡� + (1

2
)𝑣⃗(𝑡 − 1

2
∆t).                                                             (3) 

This leapfrog method also has the advantage that temperature scaling by velocity scaling is 
feasible [4]. The family of potentials developed by Tersoff are based on the concept of bond 
order: the strength of a bond between two atoms is not constant, but depends on the local 
environment (11).  At first sight, a Tersoff potential has the appearance of a pair potential:    

𝐸 = ∑ 𝐸𝑖𝑖  =  1
2
∑ 𝑉𝑖𝑖𝑖≠𝑗                                                                                       (4)  

  = 1
2
∑ ∅𝑅𝑖𝑖 �𝑟𝑖𝑖� + ⋯+ 1

2
∑ 𝐵𝑖𝑖∅𝐴𝑖𝑖 �𝑟𝑖𝑖� + ⋯                                                      (5) 

Where the potential energy is decomposed into a site energy 𝐸𝑖𝑖 and a bonding energy 𝑉𝑖𝑖, 
𝑟𝑖𝑖  is the distance between atoms i and j,  ∅𝑅 and ∅𝐴 means ``repulsive'' and ``attractive'' pair 
potential respectively.  

∅𝑅�𝑟𝑖𝑖� = 𝐴𝑒(−𝜆1𝑟��⃗ 𝑖𝑖)                                                                                            (6)  

∅𝐴�𝑟𝑖𝑖� = −𝐵𝑒(−𝜆2𝑟𝑖𝑖),                                                                                         (7)                                                                    
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Methodology                                           

The molecular dynamics (MD) simulation is performed within a canonical NVT and NPT 
ensembles, using DL_POLY software [7]. The Newtonian equations of motion are integrated 
with a routine based on the leapfrog verlet algorithm with the time step of 1.0 x 10-3 s at a 
0.0atm pressure. The temperature was varied from 300 K to 5000 K for calculating the radial 
distribution functions. For equilibrium properties we varied only the lattice constant at 300 K. 
All the equilibrium calculations were made at 300 K temperature.  After 400 000 iterations, 
different average properties are separated. This step is very important and aims to calculate 
for each atom and generate at each time step, a new positions and velocities. After that a 
frequency distribution of atomic separations is produced to compute the pair distribution 
function, and other various properties which are computed along the trajectory of the system 
in the phase space. Real space cut off and primary neighbour cut off was 2.68 Å. The 
structures were optimized at 300 K, by allowing the atomic positions, cell shape, and volume 
to relax.  

Results and discussion 
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Figure 3: The radial distribution functions of graphene64.     Figure 4: The radial distribution functions of 
                                                                                                graphene256. 
The calculation of radial distribution functions (rdf’s) from molecular dynamics trajectory data 
is a common and computationally expensive analysis task. To test the reliability of the tersoff 
potential in describing graphene, we calculate the pair distribution function of 𝐹(𝑟) for 
graphene. From peak positions of   𝐹(𝑟), we can know the probable distance between the 
atoms.  Figure 3 and 4 are rdf’s of graphene64 and graphene256 respectively, the first peak 
which is the first nearest neighbour parameter appears at 1.43 Å for 300 K and 3000 K. At 
5000 K which is above melting point of graphene, the first nearest neighbour parameter 
increases to 1.46 Å for graphene64 and 1.48 Å for graphene256. The second peak which is 
the second nearest neighbour parameter appears at 2.48 Å for 300 K and 3000 K. At 5000 K 
the second nearest neighbour parameter increases to 2.50 Å for graphene64 and 2.56 Å for 
graphene256. When the temperature increases, the base of the peaks increases and the 
height decreases. The first peak is associated with the bond length of graphene which is 
1.42 Å, and the second peak is associated with the lattice parameter of graphene which is 
2.46 Å [10]. The results for both models at 5000 K, shows that, above the melting point of 
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BLG the bond length and lattice constant changes. These results of the rdf’s of graphene are 
in agreement with both the theoretical calculations and the experimental [10, 13, 14]. 

Equilibrium properties of bilayer of graphene (BLG) 

The two graphs are for energy as a function of volume and energy as a function of lattice 
constant for graphene64 and graphene256 respectively. Since the two graphs behave 
similar and we can calculate the same things using them, we decided to take one for lattice 
constant and one for volume. 
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Figure 5: Energy as a function of volume                           Figure 6: energy as a function of lattice constant 

In order to find the most favourable structural configuration for the double layer graphene the 
relaxed 64 and 256 atom double layered graphene are optimized in order to obtain some 
notable equilibrium properties of the material. In so doing the lattice constant, the minimum  
energy, bulk modulus and its derivative were calculated using figure 5 (energy as a function 
of volume) and figure 6 (energy as a function of lattice constant), least squares fitted to the 
Murnaghan’s equation of state.  Again, 𝐸(𝑎) is found to be [13]:   

𝐸(𝑎) = 𝑎0 + 9𝑉0𝐵0𝑉0
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5
           (8) 

Where 𝐵0 is the bulk modulus, 𝑉0 the primitive volume and 𝐴 and 𝐵 are fit parameters.  

Table 1: Calculated and measured lattice constant a, bulk modulus (B0), its derivative 
(B'), minimum energy (E0), and minimum volume (V0). 

 Graphene64 
this work 

Graphene256 
this work 

Graphene[10,13] Graphite[13,14] 

a(Å) 2.551 2.571 2.461 2.603 
E0(eV/atom) -7.279 -7.300   
B0(GPa) 130.000 130.000 700.000 33.800 
B’ 35.000 35.000 1.000 8.900 
V0(Å3/atom) 19.987 20.088 6.076 35.120 
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The lattice constants are in good agreement with the measured [14] and calculated values 
[10, 13]. Although the bulk modulus is totally disagreeing with other calculations and 
experiments, it should also be noted that the model used here is a double layered structure 
(i.e graphene64 and graphene256), whereas calculations used a single sheet graphene. The 
vacuum distance of 15 Å used to minimized interactions between the models with their 
periodic images could also play a crucial role. Graphene64 and graphene256 equilibrium 
properties results are the similar. 

Thermodynamics properties of a bilayer of graphene 

Up to this point, ordinary temperature (300 K) properties of double layered models have 
been considered. Quantum mechanics effects are very important in understanding the 
thermodynamics properties below the Debye temperature. Since the molecular dynamics 
method treats the motion of the atoms classically, we only consider the thermodynamics 
properties above the Debye temperature, where the quantum effect can be neglected [16]. 
The graphite Debye temperature of 2500 K along the a-axis has been considered [17].  

Specific heat capacity and coefficient thermal expansion of bilayer of 
graphene 256 and 64 atoms 

The specific heat capacity of a material represents the change in energy density  𝐸 when the 
temperature changes by 1 K,  

 𝐶𝑣   =  𝑑 𝑈
𝑑𝑑

 .                                                                                                                     (9). 

The specific heat and heat capacity are sometimes used interchangeably, with units of joules 
per kelvin mass, per unit volume, or per mole. The specific heat does not determine the 
thermal energy stored within a body only but also how quickly the body cools off or heats up 
[18].   
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 Figure 7: Energy as a function of temperature                   Figure 8: Volume as a function of temperature                                                                                                      

Figure 7 was used to calculate the specific heat capacitor of graphene 64 and graphene256. 
The specific heat capacity calculated for both systems is 3.42 kB. This differs by 12% from 
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the Dulong –Petit’s law (3 kB) of solids at high temperatures, although no experimental data 
on this has been considered. Zakharchenko et al [19] found out that the specific heat 
capacity of a single layer of graphene (SLG) and a bilayer of graphene (BLG) are similar and 
he also proves that the specific heat capacity at a high and low temperature are not the 
same. The specific heat of graphene has not been measured directly [20]. 

The coefficient of thermal expansion is one of the most important nonlinear thermal 
properties. It is obtained from the temperature derivative of lattice constant or temperature 
derivative of volume, 

This is given by: 

𝛼 = 1
𝑉
�𝜕𝜕
𝜕𝜕
�
𝑃
                                                                                                               (10) 

The volumetric thermal expansion coefficient of graphene 64 and graphene 256 were 
calculated using fig 8. At a low temperature, the thermal expansion coefficient of graphene is 
expected to be negative and positive at high temperature [20, 19]. Most of the people who 
calculated thermal expansion coefficient at a low temperature used experimental method 
and those who calculated thermal expansion coefficient at a high temperature used the 
modelling method. Since our calculation was made at high temperature, we expect our 
thermal expansion to be positive. The thermal expansion coefficient of graphene 64 atoms is 
5.02 x10-6 K-1 and for graphene 256 atoms is 9.76 x10-6 K-1. Both models have different 
thermal expansion coefficient but positive. This is because the size effect thermodynamic 
properties [19,21].  Bao et al [21] calculated the coefficient of thermal expansion of graphene 
at a low temperature between 200 K -400 K using experimental method and found -7x10-6 K-

1. Jiang et al [21] calculated the coefficient of thermal expansion of graphene at a low 
temperature using nonequilibrium Green’s function method; he got -6x10-6 K-1. Zakharchenko 
et al [19] calculated the negative thermal expansion coefficient of single layer graphene and 
found the negative-to positive transition to occur at ∼900 K.  

 Conclusion 

Some of the structural properties are in agreement with the theoretical calculations and 
experimental data. This agreement shows the ability of Tersoff potential in combination with 
the molecular dynamics method, to predict the physical properties of various forms 
graphene. The bulk modulus is totally disagreeing with other calculations and experiments, it 
should also be noted that the model used here is a double layered structure whereas 
calculations used a single sheet graphene. The specific heat capacity of graphene64 and 
graphene256 is the same. The coefficient thermal expansion of both model are positive at a 
high temperature. Graphene256 is more stable than graphene64 because the minimum 
energy of Graphene256 is less than the one for graphene64. 
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