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Abstract. The dynamics of a quantum network under the influence of decoherence were
studied. This work is a generalisation of previous research on decoherence-assisted transport
in a dimer system [I. Sinayskiy, A. Marais, F. Petruccione and A. Ekert, Phys. Rev. Lett.
108, 020602 (2012)]. The model under investigation consists of a homogenous fully connected
quantum network in contact with an environment of spins. Exact analytical expressions for
the transition probabilities are obtained. It is shown that there exist well-defined ranges of
parameters for which decoherent interaction with the environment assists energy transfer in
the quantum network. This model of decoherence-assisted energy transfer is applied to energy
transfer in the Fenna-Matthews-Olson complex.

1. Introduction
Recently, evidence of quantum coherence has been detected in biological systems at physiolog-
ical temperature, including the photosynthetic light-harvesting complexes of a species of green
sulphur bacteria [1] and two species of marine cryptophyte algae [2]; organisms well-adapted to
photosynthesise under low-light conditions. Light-harvesting complexes act as antennas, absorb-
ing photons and transferring the resulting excitation energy through a network of photoactive
pigments held in well-defined orientations and configurations by a scaffold of proteins, to the
reaction centre, where the secondary photosynthetic process of charge separation takes place.
The electronic excitation energy transfer (EET) happens on a scale of picoseconds and with a
quantum efficiency of over 95% [3]. The surprising phenomenon of quantum coherence in warm,
noisy, complex and yet remarkably efficient energy transfer systems has led to discussion about
the role of the protein environment in the energy transfer process and the degree to which it
may contribute to this efficiency [4].

Modelling the complexity of the environment is a challenge. The protein-solvent environment
interacts strongly with the pigments due to its polarity and as a result can have a significant
effect on the quantum dynamics, which will therefore in general be non-Markovian [5]. Such
non-Markovian effects have widely been taken into account [5, 6], but so far, all have been
within spin-boson models of excitons within a protein medium. While any biological system is
always in contact with a bosonic environment, interaction with a more structured environment
such as a spin bath is more likely to assist quantum efficiency and also induces intrinsically
non-Markovian dynamics [7].



With the aim of exact solvability, we investigate the relationship between environmental spin
degrees of freedom and the efficiency of the EET process described by the Hamiltonian Hex

Hex =
∑
j

Ej |j〉〈j|+
∑
i 6=j

Vij |i〉〈j|, (1)

where the site energies of the pigments are given by Ej , and the EET couplings by Vij . We
review the case of the dimer system; generalise this model to a fully connected network; and
finally apply this model to the Fenna-Matthews-Olson (FMO) antenna complex [10].

2. Dimer
For a dimer with Hamiltonian Hd = ε1|1〉〈1|+ ε2|2〉〈2|+ J(|1〉〈2|+ |2〉〈1|), the maximum trans-
fer probability for a single excitation Max[P1→2(t)] is given by J2/(J2 + ∆2) where J is the
amplitude of transition, and the detuning ∆ is given in terms of the energy levels of the dimer
as (ε2 − ε1)/2. Certain transfer is achieved when ∆ = 0 at time t = π/(2J), or when there is
resonance between the energy levels in the system.

In a recent article [8], it is shown that there exist well-defined ranges of parameters for which
a purely decoherent interaction with environmental spins in a spin star configuration [7] assists
energy transfer in the dimer system. For a dimer with each level coupled to a spin bath at zero
temperature, the Hamiltonian of the total system is given by

H = Hd +HB +HI . (2)

Each environment Bj consists of nj spin-half particles

HB =
2∑
j=1

HBj =
2∑
j=1

nj∑
k=1

αj
σk,jz

2
, (3)

where σk,jz are Pauli matrices. The purely decoherent interaction between each site j in the
system and the corresponding spin bath is modelled by

HI =

2∑
j=1

HIj =

2∑
j=1

nj∑
k=1

γj |j〉〈j|
σk,jz

2
. (4)

The Hamiltonian of the environment HB commutes with the Hamiltonian of interaction HI and
therefore the state of the total system is always in a product state of the network and the baths.
As a result, the effective Hamiltonian for the total system with spin baths at zero temperature
is given by

H =
2∑
j=1

ε′j |j〉〈j|+
2∑

i,j=1
i 6=j

J |i〉〈j|, (5)

where ε′j = εj − γjnj/2.

For the Hamiltonian H, the maximum transfer probability Max[P1→2(t)] is given by J2/(J2 +
∆′2) where in this case the detuning is given by ∆′ = (ε′2 − ε′1)/2, and ε′j are the shifted energy
levels of the dimer as a result of coupling with strength γj with each of the spin baths with



number of spins nj . Certain transfer is similarly achieved when ∆′ = 0, which in this case is
possible for a wide range of the parameters γj and nj .

This effect persists at physiological temperature, where transfer probabilities of nearly 90%
can be achieved in the dimer at 300 K for biologically relevant parameters [8].

3. Fully-connected quantum network
For a fully connected network of N qubits interacting via homogeneous Heisenberg XX coupling
with coupling strength 2J and with equal site energies ε, the effective Hamiltonian in the single
excitation subspace is given by

HN =
N∑
i=1

ε|i〉〈i|+
N∑

i,j=1
i 6=j

J |i〉〈j|. (6)

By coupling N − k of the sites in the fully connected network to independent spin environments
in symmetric star configurations, the Hamiltonian of the total system is given by

Hk = HN +HB +HI , (7)

with HB and HI defined as previously, but with j = 1, ..., N−k. We can then write the effective
Hamiltonian for the total system, with the baths arbitrarily coupled to the last N − k sites, as

Hk =

k∑
j=1

ε|j〉〈j|+
N∑

j=k+1

εj |j〉〈j|+
N∑

i,j=1
i 6=j

J |i〉〈j|, (8)

where εj = ε− γjnj/2.

In the case where k = N and all levels have equal energy ε, the Hamiltonian HN is given
by Eq. (1). In this case the maximum probability of purely coherent transfer through the
network is

Max[PI→F (t)] =
4

N2
, (9)

at time t = π/(NJ). Our study will focus on whether decoherent interaction between a fully-
connected network and environmental spins can enhance energy transport through the network.

We analyse a range of cases where spin baths are added to the initial, final and intermedi-
ate network sites, and find that decoherent interaction with the spin baths in general increases
transfer probability through the network, and furthermore that these effects persist at physio-
logical temperature [9].

As an example, we consider here the case of coupling both the initial and final sites to spin
baths, with Hamiltonian HN−2 given by Eq. (8) with k = N − 2. In this case, it can be shown
that when the shifted energy levels are equal, ε1 = ε2, there exist times for which the transfer
probability is arbitrarily close to 1.

We now show that such an effect persists at physiological temperatures by considering the
Hamiltonian HN−2 with spin baths at a temperature of 300 K coupled to the initial and final
sites.
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Figure 1. Graph of the maximum of the probability of transition Max[PI→F (t)] at 300 K in a
10-site fully connected homogeneous network, with isolated site energies ε = 100ps−1, and spin
baths coupled to each of the initial and final sites, with n1 = n2 = 10 and bath energy parameter
α1 = α2 = 100 ps−1.

In this case the initial state of the bath is given by the canonical distribution

ρB(0) =
2∏
i=1

1

Zi
e−βαiS

z
i , (10)

where Zi is the partition function of the corresponding spin bath, β is the inverse temperature
and Szi are collective spin bath operators, see [8] for details.

In Fig. 1 the maximum of the probability of transition Max[PI→F (t)] for such a system is
plotted as a function of the coupling constants γ1 and γ2 with spin baths coupled to each of the
initial and final sites. It can be seen that in regions where ε1 ≈ ε2 6= ε, transfer probabilities of
up to 72% are achieved.

4. FMO complex
The first evidence of quantum coherence in photosynthetic antennas at physiological tempera-
ture was detected in green sulphur bacteria and cryptophyte algae [1, 2], both organisms able
to photosynthesise efficiently at low light intensities. Green sulphur bacteria uniquely contain
a complex called the Fenna-Matthews-Olson (FMO) complex [10], which mediates excitation
energy transfer from the antenna to the reaction centre [11]. The site energies and optical
transition energies for the FMO complex of Chlorobium tepidum used here were calculated by
Adolphs and Renger [12]. Quantum coherent EET through the bare excitonic system without
adding environmental contributions to the Hamiltonian HFMO

ex happens with a low probability:
for the transfer of the excitation from site 1 to site 3, the probability of transfer is just 4.2%.
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Figure 2. The probability of transfer P1→3(γ, t) for the FMO complex with sites coupled to
spin baths at 300 K with numbers of spins at each site n1 = 2, n4 = 8 and n2,3,5,6,7 = 0 and spin
bath energy constant α=150 ps−1. The maximum transfer probability is 86%.

We now investigate the effect of decoherent interaction with environmental spins at 300 K on
the process of EET in the FMO complex.

With the spin baths at a temperature of 300 K, we calculate the maximum probability of
transfer during the first picosecond, for equal environmental couplings γ between 0 and 250
ps−1 at each site. We find that for a total of 10 spins, distributed between the seven network
sites as follows: n1 = 2, n4 = 8 and n2,3,5,6,7 = 0, and with spin bath energy constant α=150
ps−1, the maximum transfer probability is 86% (see Fig. 2). This is a vast increase in the
transfer probability from the case with no spin baths, where the probability is 4.2%. Therefore,
in this case decoherence assists the efficiency of quantum coherent EET in the FMO complex.

5. Conclusion
The recent detection of quantum coherence in biological systems that are remarkably efficient
in transferring excitation energy at physiological temperatures, has led to the investigation as
to whether this coherence contributes to the efficiency. Here, we have investigated the influence
of environmental spins on quantum coherent transfer. We have shown through the derivation of
analytical expressions that the transfer probabilities through a fully connected quantum network
are improved as a result of decoherent interaction with environmental spins, and that in some
cases certain transfer can be achieved. Moreover, this effect is shown to persist at physiological
temperatures. We apply this model to the FMO complex, and find that coupling the network
sites with environmental spins at physiological temperature improves transport through the
network for the considered case. These promising results motivate further study of biological
transport systems where environmental spins may play an important role in the dynamics.
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