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Abstract. Based on the laws of physics, in particular the no-cloning theorem, quantum key
distribution makes possible the distribution of a secret key between two legitimate parties
commonly known as Alice and Bob. The third party known as an eavesdropper, Eve, can
not clone the quantum states sent by Alice and then re-send a perfect copy to Bob without
being detected. However, the phase-covariant cloning machine seems to be the best cloning
machine for the BB84 quantum states but there is a trade-off between the quality of the clone
and the amount of information that Eve can gain while the protocol remaining secure. By using
the phase-covariant cloning machine to illustrate strategies performed by the eavesdropper, we
arrive at the quantum bit-error-rate of 0.1464, which agrees with previous results.

1. Introduction

Quantum cryptography or more exactly quantum key distribution (QKD) provides the only
physically secure and proven method for the transmission of a secret key between two distant
parties, Alice and Bob, who are connected by an authenticated classical channel and an insecure
quantum channel [1]. The security of QKD is based on the laws of physics rather than on the
complicated mathematical algorithms to afford security [2, 3]. Specifically, QKD is based on
the no-cloning theorem [4] which prohibits perfect cloning of an unknown quantum state with
perfect fidelity and also on the Heisenberg uncertainty principle [5].

Wootters and Zurek showed that it is impossible to construct a device that will produce an
exact copy of an arbitrary quantum state [4]. If perfect cloning was allowed then Eve would
duplicate exact copies of the signal states being transmitted between legitimate parties. However
imperfect cloning is possible, but it comes at a cost of being detected. For example, Eve can
make a poor clone for herself and then send a perfect clone to Bob without being detected,
but does not obtain much information about the key. On the contrary, she can make a perfect
clone for herself and then send a poor copy to Bob. However, this affords her to obtain enough
information but would reveal her presence to the legitimate parties.

In a QKD protocol, the quantum-bit-error-rate (QBER) refers to the fraction of positions
where Alice’s and Bob’s bit strings differ. QBER is generally a direct measure for the secrecy of
Alice and Bob’s strings since any eavesdropping strategy would perturb the correlations between



them. For example, if the QBER is very high, the two parties abort the protocol or else they
use the classical post-processing procedure to distill a secret key.

The security proof of the BB84 protocol [6] against arbitrary eavesdropping strategies was
first shown in a complicated proof by Mayers [7]. Later, a simpler proof was shown by Lo and
Chau [8]. However, their proof needs a quantum computer to implement it. A number of years
later, Shor and Preskill generalized the ideas of Lo and Chau’s security proof [8] and proposed
a simpler proof for the BB84 protocol [9]. Many versions of security analysis have been derived
for this protocol [10, 11, 12]. This protocol was first proven to be unconditionally secure by
Inamori [13]. We highlight that this unconditional security proof also takes into account the
finite-size key effects and this is immediate to practical implementations of the protocol.

There is a trade-off between the quality of the clone and the amount of information that
Eve can gain about the key. Hence in this paper, our goal is to calculate an upper bound on
the achievable information that Eve can gain but still the protocol remaining secure. In our
derivation, we normalize clearly the states to be cloned in order to explicitly arrive at a QBER
of 0.14644, which has been proven in various papers [14, 9].

2. BB84 Protocol

The BB84 protocol utilizes two communication channels between Alice and Bob. It consist
first of a public classical channel where each party including the eavesdropper can listen
to conversations but cannot change the contents of the message and, second of a quantum
communication channel used for the transmission of quantum signals. However, the quantum
communication channel is assumed to be insecure. This means that the eavesdropper has got
all the resources needed to manipulate the signals. The protocol uses four quantum states
{|0〉, |1〉, |+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)}. These basis states can be represented by

any two-level quantum system, for example, by photon polarization and spin 1/2 systems. For
linearly polarized photons, the first two states correspond to vertically (↑) and horizontally
polarized (→) photons. For circularly polarized photons, the last two states correspond to
polarization angles 45◦(ր) and −45◦(տ) with respect to the vertical axis. The states |0〉 and
|+〉 represent bit value 0 while the states |1〉 and |−〉 represent bit value 1. The pairs {|0〉, |1〉}
and {|+〉, |−〉} form two non-orthonormal and conjugate bases. The BB84 protocol consists of
the following steps:

a) Quantum Transmission Phase

Alice randomly generates a bit string that she wants to send. For each bit, she randomly
and independently chooses her encoding basis and prepares the states. She sends these
prepared states via the insecure quantum channel. Upon receiving these states, Bob
independently of Alice randomly chooses his measurements basis for each qubit he
receives. Bob records his measurements bases and also the result of the measurements.

b) Bases Announcement

Alice and Bob communicate over the unjammable classical channel to compare the bit
value of each basis, discarding those instances in which they used different bases. This
step is called sifting. Statistically, this happens in half of the cases. The remaining
sequence of bits forms the sifted key.

c) Error estimation

Ideally, in the absence of errors, the raw key should be identical between Alice and Bob
meaning that Eve has no information and therefore the raw key becomes the secret
key. Alice and Bob can check whether an eavesdropper was present or not by checking
the difference between their keys (i.e., error rate) by comparing some randomly chosen
bits. Let us assume that the error rate for measurements in both bases are the same
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Figure 1. Eavesdropping by using a phase-covariant cloning machine. CM represents the
cloning machine.

and equal to ε. If the calculated error rate is higher than some prescribed threshold
they abort the protocol. Otherwise they have to perform classical post-processing and
this is performed on the classical channel. At the end of this processing Alice and Bob
share a truly secret key or nothing at all since they abort the protocol.

3. Description of the phase-covariant cloning machine

Regardless of the no-cloning theorem, the best eavesdropping strategy for the BB84 quantum
states can be achieved by using the phase-covariant cloning machine [15]. This cloning machine
consists of two inputs states labelled as Alice, |0〉a and ancilla |Q0〉x. These are states to be
cloned. The cloning machine gives out a state which is sent to Bob, |0〉b and another to Eve,
|Q̄0〉x which she keeps. This is shown in Figure 1.

We describe the behavior of an ideal quantum copying machine as

|s〉a|Q〉x → |s〉a|s〉b|Q̄〉x, (1)

where |s〉a represents the in state of the original mode to be copied, |Q〉x represents the in state
of the copying machine, |s〉b represents the out state of the copy mode and |Q̄〉x represents the
final state of the copying machine.

The cloning machine can be described by the following transformation rules on the in states
|0〉a and |1〉a as

|0〉a|Q〉x → |0〉a|0〉b|Q0〉x, (2)

and
|1〉a|Q〉x → |1〉a|1〉b|Q1〉x. (3)

We note that the basis vectors |0〉a and |1〉a can be perfectly cloned but others cannot be. Instead
of using these quantum states |0〉a and |1〉a which can be copied ideally, we use the Pauli matrix
Y to demonstrate what happens in a real scenario as

|0〉a = 1√
2
(|0〉+ i|1〉), (4)

and
|1〉a = 1√

2
(|0〉 − i|1〉). (5)

The action of the phase covariant cloning machine can now be described as follows

|0〉a|Q0〉x → |0〉b|Q̄0〉x, (6)



|1〉a|Q0〉x → cos γ|1〉b|Q̄1〉x + i sin γ|0〉b|Q̄0〉x, (7)

where 0 ≤ γ ≤ π/2. We use the basis {|0〉, |1〉} to explain how the cloning machine operates
when various states are sent by the following operation

|a〉α|Q0〉x →
∑

b,c∈{0,1}
ζabc|b〉β |c〉Eve, (8)

with,
ζabc = ei(a+b+c)π/2((−1)a + (−1)b cos γ + (−1)c sin γ), (9)

where γ determines the quality of the two clones. If Bob measures a |1〉 when Alice has sent a
|0〉 this results in an error in Alice’s and Bob’s key elements. We find that

|ζ010|
2 = (1 + cos γ − sin γ)2

= 2 + 2 cos γ − 2 sin γ − 2 cos γ sin γ, (10)

and

|ζ011|
2 = (1− cos γ − sin γ)2

= 2− 2 cos γ − 2 sin γ + 2cos γ sin γ. (11)

Then, we can find the error probability by evaluating |ζ010|
2 + |ζ011|

2 as follows

|ζ010|
2 + |ζ011|

2 = (1− cos γ)2(1− cos γ) sin γ + sin2 γ

+ (1− cos γ)2 − 2(1− cos γ) sin γ + sin2 γ

= 4(1 − cos γ). (12)

Now, our goal is to calculate the normalization constant where we use |ψ〉 =
∑

b,c∈0,1 ζabc|b〉β|c〉Eve, a ∈ 0, 1 and the fact that ||ψ||2 = 〈ψ|ψ〉 and proceed as follows

|ψ〉 = ζa00|0〉|0〉 + ζa10|1〉|0〉 + ζa01|0〉|1〉 + ζa11|1〉|1〉

〈ψ| = ζ∗a00〈0|〈0| + ζ∗a10〈1|〈0| + ζ∗a01〈0|〈1| + ζ∗a11〈1|〈1|

〈ψa=0|ψa=0〉 = 2((1 + cos γ)2 + sin2 γ) + 2((1 − cos γ)2 + sin2 γ)

= 8. (13)

The amount of error between Alice’s and Bob’s key elements can be obtained by evaluating
the probability that Bob measures |1〉 although Alice sent the state |0〉. This is obtained by
calculating the probability mass on the |1〉b state. This is the probability that Bob measures |1〉
exactly and we can calculate it as follows

ε =
∑

c=0,1

|ζ01c|
2 = 4(1 − cos γ)/8 = (1− cos γ)/2. (14)

The degree of correlations between Alice and Bob can be quantified by the mutual information
which is expressed as I(A : B) = H(A) − H(A|B). The entropy of Alice’s string A equals
H(A) = 1 and the conditional entropy of A given B is given by H(A|B) = h(ε). This can then
be written as

I(A : B) = H(A)−H(A|B)

= 1− h(ε)

= 1− h[(1 − cos γ)/2], (15)



where h(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the binary entropy function. The probability of
Eve guessing a result can be found by calculating the probability on the |1〉Eve state which is

ε =
∑

b=0,1

|ζ0b1|
2. (16)

Also, by using ζabc = ei(a+b+c)π/2((−1)a + (−1)b cos γ + (−1)c sin γ) we find that,

|ζ001|
2 = (1 + cos γ − sin γ)2

= 2 + 2 cos γ − 2 sin γ − 2 cos γ sin γ, (17)

|ζ011|
2 = (1− cos γ − sin γ)2

= 2− 2 cos γ − 2 sin γ + 2cos γ sin γ. (18)

We again find the error probability by evaluating |ζ010|
2 + |ζ011|

2 as follows

|ζ001|
2 + |ζ011|

2 = 2 + 2 cos γ − 2 sin γ − 2 cos γ sin γ

+ 2− 2 cos γ − 2 sin γ + 2cos γ sin γ

= 4(1 − sin γ). (19)

It can also be recognized that by using the same procedure as in Equation (13), the normalization
is again calculated and found equal to 〈ψa=0|ψa=0〉 = 8. Then, we can evaluate the error
probability as

ε =
∑

b=0,1

|ζ0b1|
2 = 4(1 − sin γ)/8 = (1− sin γ)/2. (20)

Again, the degree of correlations between Bob and Eve is quantified by the mutual information
and is calculated as

I(B : E) = H(B)−H(B|E)

= 1− h(ε)

= 1− h[(1 − sin γ)/2]. (21)

In order to determine whether the channel is secure for communication, one must compare
the mutual information between Alice and Bob, I(A : B) and the minimum mutual information
between each party and Eve. This gives us an expression for the secret fraction r and is expressed
as

r = I(A : B)−min(IAE , IEB), (22)

The secret key fraction is expressed as r = ℓ/N where, ℓ is the length of the secret key to be
extracted and N is the number of signals exchanged by Alice and Bob in a run of key exchange.
In this scheme, the optimal mutual information between Alice and Bob is the same. We use the
Csiszár-Körner bound [16] which is expressed as

ℓ = I(A : B)−max
Eve

I(A : E). (23)

In order to find the security bound for individual attacks we can express

I(A : E) = max
Eve

I(A : E), (24)



and similarly I(E : B) is defined in the same manner. The term maxEve means that one must
maximize the mutual information over Eve’s strategies. Then the amount of information gained
by the eavesdropper as a function of error rate can expressed as

I(A : E) = 1− h[(1 − sin γ)/2]

= 1− h[12 −
√

ε(1 − ε)], (25)

where ε = (1−cos γ)/2 from Eq (14). In the case of γ = π/4, the two clones have the same quality.
Therefore, if we take γ = π/4 (this is where we evaluate the minimum of I(B : E) = I(A : E)),
this equation gives the upper bound on the bit-error-rate for the BB84 protocol by using one-
way classical post-processing. The value of the QBER becomes ε = 0.14644 at which it is safe
to extract a secret key. This is the limiting QBER at which the communication channel is
considered to be secure for the generation of the security key. We note that this derived QBER
value agrees with the previous results which appear in Refs. [14, 9].

4. Conclusion

Based on the above calculation, we recognize that the most dangerous eavesdropping attack can
be realized with the aid of phase-covariant cloning machine, which was used to perfectly clone
the quantum states of the BB84 protocol. This can also be interpreted via the complimentarity
principle. If Bob receives the first clone and the second clone is the eavesdropper’s copy then
the more Eve knows Alice and Bob’s signals, the less strongly their signals are correlated, thus
leading to detection. This means the quantum bit-error-rate will be above 0.1464, so they abort
the protocol because the channel is no longer secure for reliable communication.
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