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Abstract. Ground state properties of doubly closed−shell nuclei are studied using the
Potential Harmonic Expansion Method. The method transforms the many−body Schrödinger
equation into an infinite set of coupled differential equations. The coupled differential equations
are solved using an orthogonal collocation procedure. The resulting eigenvalue equation is solved
via the Renormalized Numerov method.

1. Introduction

A considerable number of methods have been employed to study few− and many−body systems.
Amongst them are the Faddeev approach for three−body systems [1], Variational Monte-
Carlo Methods [2], Integrodifferential Equation Approach (IDEA) [3, 4], Potential Harmonic
Expansion Method (PHEM) [5, 6]. The Potential Harmonic Expansion Method, which is used
in this work, is based on the expansion of the Faddeev−like amplitude on the potential harmonic
basis and takes into account two−body correlations. The substitution of the expansion into
the many−body Schrödinger equation, results in an infinite set of one−dimensional Coupled
Differential Equations (CDE), which become cumbersome to solve numerically, especially when
the number of particles A becomes large, the Jacobi polynomials involved in the construction
of the potential harmonic basis, become highly oscillatory. Moreover, the size of the basis set
is proportional to the number of particles, and naturally leads to more numerical difficulties
in the evaluation of the resulting potential matrix. To address some of these difficulties, Das
et al [7] optimized the narrow subinterval in [−1 : 1] which contributes appreciably on the
potential matrix as A becomes large. With such an optimization, they investigated a Bose-
Einstein Condensate (BEC) containing up to 14000 atoms of 87Rb. This method has been also
widely used as well in nuclear physics [8]. The popularity of this method is due to its advantages
among which, one mentions: (i) it includes two−body correlations, (ii) is quite simple and fast in
contrast to the Diffusion Monte Carlo (DMC) Method which, although it is an exact many−body
method, it requires huge computational efforts [9]. The CDE are truncated for numerical purpose
without significant loss in the efficiency. Our main concern in this paper, is to calculate ground
state energies and root-mean-square radii of doubly closed-shell nuclei. To this end, the CDE
are solved subject to appropriate boundary conditions. To check the stability and accuracy of
the method employed, for comparison purposes, we first calculate the binding energies of 3H by
solving Differential Faddeev Equations (DFE) and using semi-realistic potentials. Second, we
solve the CDE for A = 3 and obtain again binding energies of 3H, using the same potentials.



After the convergence criteria have been established, we employ the method to study ground
state properties of considered nuclei where A > 3, using the Volkov potential, again for simplicity
and for comparison purposes. It is well known that the first term in the potential harmonics
is the most dominate and accounts for more than 80% on the total binding energy for 4He
[6]. Therefore, in this work, we want to check whether this contribution is proportional to the
number of particles A. The convergence of the binding energies in terms of the number of
the coupled differential equations is also investigated. This paper is organized as follows: in
section 2, we briefly summarize the differential Faddeev equations and the coupled differential
equations for the case where the particles are identical, starting from the decomposition of the
wave function in terms of Faddeev-like amplitudes. In section 3, we present the results, whereas
our conclusions are reported in section 3.

2. Formalism

Consider a system of A particles, each of mass mi, position vector ri interacting via two−body
potentials V (ri − rj). The Schrödinger equation has the form

[ A
∑

i=1

h̄2

mi
∇2

i +
A

∑

i,j>i

V (rij) − E

]

Ψ(r) = 0, (1)

where the first term represents the kinetic energy, rij = ri − rj , E the energy of the system and
Ψ(r) the wave function of the system with r ≡ (r1, r2, . . . , rA).

2.1. Differential Faddeev Equations

For three−body systems, the wave function Ψ(r) in Eq.(1) can be decomposed in the form

Ψ(r) =
3

∑

i=1

φi(xi, yi, zi), (2)

where φi(xi, yi) are Faddeev amplitudes, with xi, yi being Jacobi coordinates and zi = cos(xi.yi).
The Hamiltonian of the system reduces to

H = H0 +
3

∑

i=1

Vi(xi), (3)

where H0 is the free Hamiltonian of the three particles, given by [10]

H0 = − ∂2

∂x2
− ∂2

∂y2
−

(

1

x2
+

1

y2

)

∂

∂z
(1 − z2)1/2 ∂

∂z
. (4)

Substituting Eqs.(3), (2) into Eq.(1), one obtains a single differential equation for identical
particles

(H0 + V − E3B)φ(x, y, z) = −V (I + P+ + P−)φ(x, y, z), (5)

where E3B is binding energy and P± are permutation operators. We solve equation (5) to obtain
ground state binding energies of 3H.



2.2. Coupled Differential Equations

To obtain a infinite set of CDE, we first rewrite Eq.(2) as

Ψ(r) =
A

∑

i,j>i

Φ(rij, r), (6)

where Φ(rij , r) are Faddeev-like amplitudes, with r being the hyperradius. Substituting Eq.(6)
into Eq.(1), we obtain the Faddeev-like equations

[ A
∑

i=1

h̄2

mi
∇2

i +
A

∑

i,j>i

V (rij) − E

]

Φ(rij, r) = −V (rij)
A−1
∑

k,l>k

Φ(rkl, r), (7)

for the amplitudes. Expanding the Faddeev amplitude in potential harmonic basis, we obtain

Φ(rij, r) = r(3A−4)/2
∞
∑

K=0

P0,0
2K(Ωij)uK(r), (8)

where P0,0
2K(Ωij) are S-state potential harmonics[Ωij ≡ (ωij , θ) the set of angular coordinates of

rij] and uK(r) the radial part of the wave function. Inserting Eq.(8) into Eq.(7), we obtain an
infinite set of CDE [9]

[

− h̄2

m

d2

dr2
+

h̄2

m

LK(LK + 1)

r2
− E

]

uK(r) +
∞
∑

K ′=0

f2
K ′VKK ′(r)uK ′(r) = 0, (9)

where LK = 2K + (3A−6)
2 ,m = M

A ,

f2
K = 1 +

2(A − 2)Pα,β
K

(−1/2) + [(A − 2)(A − 3)/2] Pα,β
K

(−1)

Pα,β
K (1)

, (10)

with α and β being constants, and the potential matrix VKK ′(r) is given by

VKK ′(r) = (Nα,β
K Nα,β

K ′ )−1
∫ +1

−1
Pα,β

K (z)Pα,β
K ′ (z)V

(

r
√

(1 + z)/2

)

W (z)dz, (11)

with Nα,β
K as the normalization coefficient of Jacobi polynomials Pα,β

K (z) and W (z) = (1 −
z)α(1 + z)β. The root-mean-square radii R are calculated via the following relation [11]

R =

〈

r2
〉1/2

√
2A

, where
〈

r2
〉

=

∫

∞

0 |uK(r)|2 r2dr
∫

∞

0 |uK(r)|2 dr
. (12)

3. Results and Discussions

We first solved Eq.(5) using as input the Malfliet-Tjon (MT), Volkov, S3 and S4 potentials
[4, 12, 13], to obtain ground state energies of 3H. Our results, summarized in Table 1, are in
good agreement with the literature.



Table 1. Ground state energies of 3H (in MeV) obtained by solving the DFE, using the MTV[12],
MTV[14], Volkov, S3 and S4 potentials.

This work Others
MTV[12] E3B(MeV)

Nx Ny Nz E3B(MeV)
14 14 3 -7.7724 -7.73 [15]
18 18 3 -7.7405 -7.68 [17]
20 20 3 -7.7366 -7.7366192[16]
24 24 3 -7.7364
28 28 3 -7.7364

MTV[14] – – -8.2578 -8.25 [17]
-8.34 [15]

Volkov[3] – – -8.4605 -8.47 [17]
S3[13] – – -6.6902 -6.695[4]
S4[13] – – -7.0598 -7.08[4]

Next we present the results obtained by solving the CDE, Eq.(9) (which are truncated up to
K

max
), using the same inputs. We first calculate the ground state binding energy of 3H as a

function of K
max

using Volkov potential. The results are presented in Table 2, where we see
that converged binding energy is -8.4328 MeV for K

max
= 18, which is comparable with the

experimental value -8.45 MeV [18].

Table 2. Convergence of the binding energy of 3H in (MeV) as a function of K
max

using the
Volkov potential.

K
max

0 4 6 8 10 14 16 18

E[MeV] -7.7096 -8.3427 -8.4102 -8.4247 -8.4303 -8.4326 -8.4328 -8.4328

The results obtained using other potentials (i.e the MTV[12], MTV[14], S3 and S4 potentials)
are given in Table 3.
In Table 4, we compare the results obtained by the two methods (i.e the Faddeev formalism

Table 3. Ground state binding energies of 3H (in MeV)obtained by solving the CDE, using
MTV[12], MTV[14], S3 and S4 potentials.

This work Others
Potentials E(MeV) E(MeV)
MTV[12] -7.7325 -7.65 [4]
MTV[14] -8.2500 -8.25 [15]

S3 -6.5486 -6.64032[13]
S4 -7.1526 -7.144[13]

and the PHEM). A good agreement of the two methods is evident. The small differences can
be attributed to overall numerical instabilities. It results that for S-projected potentials, the
PHEM is in good agreement with the Faddeev formalism, as expected.



Table 4. Comparison between the 3H binding energies obtained by solving FDE and the CDE
using, as input the MTV[12], MTV[14],Volkov, S3 and S4 potentials.

Potentials Faddeev PHEM ∆E(MeV)
MTV[14] -8.2578 -8.2500 0.0078
MTV[12] -7.7364 -7.7354 0.001
Volkov -8.4605 -8.4328 0.0277

S3 -6.6902 -6.5486 0.1416
S4 -7.0598 - 7.1526 -0.0928

Having established the convergence criteria, we investigated the convergence of the binding
energies of the nuclei considered as functions of K

max
. In Table 5, we present the binding ener-

gies of the 4He, 8Be, 12C and 16O as functions of K
max

, using the Volkov potential. From the
same table, converged binding energies are obtained up to K

max
= 18. Our results again are in

good agreement with the literature. Evaluating the contribution of the first term (K
max

= 0)
on the total binding energy, from Tables 2 and 5, one obtains that the first term accounts for
91.42% for 3H, 94.97% for 4He, 97.98% for 8Be, 98.84% for 12C and 99.24% for 16O on the
total binding energies. With the Volkov potential, we calculated the root-mean-square radii of

Table 5. Convergence of the binding energies (in MeV) of the doubly closed-shell nuclei 4He,
8Be, 12C and 16O in terms of K

max
obtained with the Volkov potential.

Binding energies in MeV (this work) Others
K

max

4He 8Be 12C 16O Binding energies (in MeV)
0 -28.5862 -271.2943 -780.3012 -1559.5220 SIDE[11](-1571)16O
2 -29.1157 -272.6871 -782.8049 -1563.2262 HCA[11](-271.1)8Be
4 -29.8599 -275.4594 -786.8792 -1568.2090 HCA[11](-1559)16O
6 -30.0504 -276.6124 -788.8436 -1570.6676 HCA[15](-1560)16O
8 -30.0895 -276.8460 -789.3045 -1571.3062 SIDE[15](-1571)16O
10 -30.0987 -276.8799 -789.3837 -1571.4313 HCA[11](-780)12C
12 -30.0984 -276.8832 -789.3946 -1371.4513 SIDE[11](-30.1)4He
14 -30.0986 -276.8842 -789.3958 -1571.4540
16 -30.0987 -276.8842 -789.3959 -1571.4543
18 -30.0987 -276.8842 -789.3959 -1571.4543

the nuclei under investigation. Our results which are compared with the results from [11] are
reported in Table 6. For 3H, the experiment value is 1.67 fm [18].

Table 6. Root-mean-square radii in (fm) of the 3H, 4He, 8Be, 12C and 16O nuclei obtained
using the Volkov potential.

This work
Nuclei 3H 4He 8Be 12C 16O
R[fm] 1.7468 1.4833 1.2909 1.2398 1.2077

Ref.[11]
R[fm] – 1.49 1.30 1.25 1.20

In Fig. 1(a) and (b) we plotted the partial waves of 3H and 4He respectively for different terms
of the potential harmonics. The figure shows that the first term represents the most important
part of the wave function.
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Figure 1. Partial wave functions of 3H and 4He.

4. Conclusions

We calculated the ground state energies and root-mean-square radii of nuclear systems in the
PHEM framework, and more particularly we looked at the doubly closed-shell nuclei. We focused
on the convergence of the binding energies as functions of the truncation K

max
. From the results

obtained we may highlight the following conclusions: (i) the method provides good convergence
in the binding energy, (ii) for A=3 and for S-projected potentials, the DFE and PHEM give
close results as expected, the small differences being attributed to overall numerical instabilities,
(iii) using Volkov potential, up to A = 16 we are still solve the same number of equations, (iv)
as A becomes large, the first term of the potential harmonics is the most dominant and accounts
for more that 90% on the total binding energy.
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